
Modern SSDs

Jin-Soo Kim
(jinsoo.kim@snu.ac.kr)

Systems Software &
Architecture Lab.

Seoul National University

Fall 2021

4190.568 Advanced Operating Systems | Fall 2021 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 2

▪ Several assumptions are no longer valid

Assumptions Disks SSDs

Sequential accesses much faster than random

No write amplification

Little background activity

Media does not wear down

Distant LBNs lead to longer access time

Source: A. Rajimwale et al., "Block Management in Solid-State Devices," USENIX ATC, 2009.

4190.568 Advanced Operating Systems | Fall 2021 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 3

▪ Sector Translation Layer

• Address mapping

• Garbage collection

• Wear leveling

▪ Block Management Layer

• Bad block management

• Error handling

▪ Low Level Driver

• Flash interface

NAND storage

Operating system

Flash Memory Chip

Controller

File system

Block Layer

Block Device Driver

Application

Flash Translation Layer
FTL (Flash Translation Layer)

STL (Sector Translation)

BML (Block Management)

LLD (Low Level Driver)

4190.568 Advanced Operating Systems | Fall 2021 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 4

Read/write/erase

Applications

Virtual File System

File System

syscalls

Read/write

Flash Storage (SSD)

NAND Flash

Flash Translation Layer

Low Level Driver

Block Device Driver

Read/write

FTL on Device

Controller

Applications

Block Device Driver

Flash Translation Layer

Low Level Driver

Virtual File System

File System

syscalls

Read/write

FTL on Host

Flash Storage

NAND Flash

Controller

Applications

Low Level Driver

Virtual File System

Flash Translation Layer

Flash File System

syscalls

Read/write/erase

Flash File System

Read/write/erase

Flash Storage

NAND Flash

Controller

Applications

Flash-aware App.

library calls
or syscalls

User/Kernel-level Driver

Flash Storage

NAND Flash

Controller

Read/write/erase

Flash Translation Layer

4190.568 Advanced Operating Systems | Fall 2021 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 5

▪ Flash cards or flash SSDs are already equipped with FTL

▪ Benefits?

▪ Limitations?

▪ Hints from file systems or applications can be useful

• TRIM, Stream, ...

4190.568 Advanced Operating Systems | Fall 2021 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 6

▪ What happens on file deletion?

1 2 3 4 5 6File: abc.txt

1 2 6 5 4 3

Raw NAND Flash Memory

0
1

0
0

1
0

..

0
0

1
0

1
1

…

1 2 6 5 3 4

Logical blocks

Su
p

er
b

lk

Datablock
bitmap

i-node
bitmap

i-node for “abc.txt”

4190.568 Advanced Operating Systems | Fall 2021 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 7

▪ ATA interface standard (T13 technical committee)

• "The data in the specified sectors is no longer needed"

• Originally proposed as a non-queued command, but SATA 3.1 introduces the

queued TRIM command

• UNMAP, WRITE SAME with unmap flag in SCSI, DEALLOCATE in NVMe

▪ Types

• Non-deterministic Trim: reads may return different data

• Deterministic Trim: reads return the same data

• Deterministic Read Zero after Trim: all reads shall return zero

▪ TRIM commands can be automatically issued on file deletion or format

▪ fstrim: discard unused blocks on a mounted file system

4190.568 Advanced Operating Systems | Fall 2021 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 8

▪ FusionIO DFS, Apple APFS / HFS+

▪ Benefits?

▪ Limitations?

4190.568 Advanced Operating Systems | Fall 2021 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 9

▪ Kernel manages raw flash memory directly

▪ Cross-layer optimization possible

• Example: file data indexing

– Legacy file system: <inode #, block #> → <LBA> → <flash block #, flash page #>

– Flash file system: <inode #, block #> → <flash block #, flash page #>

• What else?

▪ Used in old embedded systems, but not so successful

• JFFS2, YAFFS, UBIFS, ...

• Why?

4190.568 Advanced Operating Systems | Fall 2021 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 10

▪ Datacenter applications want to manage the underlying flash directly

• Why?

▪ Diverse proposals on flash interface

• Software Defined Flash [ASPLOS '14]

• Application-managed Flash [FAST '16]

• Open-Channel SSD [FAST '17]

• ZNS(Zoned-NameSpace) SSD [ATC '21]

4190.568 Advanced Operating Systems | Fall 2021 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 11

▪ Device-level File System [FAST '18]

• Move file system into the device hardware

• Use device-level CPU and memory for DevFS

• Apps. bypass OS for control and data plane

• DevFS handles integrity, concurrency,

crash-consistency, and security

• Achieves true direct-access

▪ Challenges

• Limited memory inside the device

• DevFS lack visibility to OS state

The Multi-streamed

Solid-State Drive

Some of slides are borrowed from the authors’ presentation.

(J.-U. Kang et al., HotStorage, 2014)

4190.568 Advanced Operating Systems | Fall 2021 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 13

▪ Previous write patterns (= current state) matter

4190.568 Advanced Operating Systems | Fall 2021 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 14

4190.568 Advanced Operating Systems | Fall 2021 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 15

▪ Mapping data with different lifetime to different streams

4190.568 Advanced Operating Systems | Fall 2021 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 16

▪ High GC efficiency → Performance improvement

4190.568 Advanced Operating Systems | Fall 2021 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 17

4190.568 Advanced Operating Systems | Fall 2021 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 18

4190.568 Advanced Operating Systems | Fall 2021 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 19

▪ Write operations when Cassandra runs

4190.568 Advanced Operating Systems | Fall 2021 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 20

▪ Just one stream ID (= conventional SSD)

4190.568 Advanced Operating Systems | Fall 2021 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 21

▪ Separate application writes (ID 1) from system traffic

(ID 0)

4190.568 Advanced Operating Systems | Fall 2021 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 22

▪ Use three streams; further separate Commit Log

4190.568 Advanced Operating Systems | Fall 2021 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 23

▪ Give distinct streams to different tiers of SSTables

4190.568 Advanced Operating Systems | Fall 2021 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 24

▪ Cassandra’s normalized update throughput

• Conventional “TRIM off”

4190.568 Advanced Operating Systems | Fall 2021 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 25

▪ Cassandra’s normalized update throughput

• Conventional “TRIM on”

4190.568 Advanced Operating Systems | Fall 2021 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 26

▪ Cassandra’s normalized update throughput

• “Multi-App” (System data vs. Cassandra data)

4190.568 Advanced Operating Systems | Fall 2021 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 27

▪ Cassandra’s normalized update throughput

• “Multi-Log” (System data vs. Commit-Log vs. Flushed data)

4190.568 Advanced Operating Systems | Fall 2021 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 28

▪ Cassandra’s normalized update throughput

• “Multi-Data” (System data vs. Commit-Log vs. Flushed data vs. Compaction Data)

4190.568 Advanced Operating Systems | Fall 2021 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 29

▪ Cassandra’s GC overheads

4190.568 Advanced Operating Systems | Fall 2021 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 30

▪ Cassandra’s cumulated latency distribution

• Multi-streaming improves write latency

• At 99.9%, Multi-Data lowers the latency by 53% compared to Normal

4190.568 Advanced Operating Systems | Fall 2021 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 31

▪ Mapping application and system data with different lifetimes to SSD

streams

• Higher GC efficiency, lower latency

▪ Multi-streaming can be supported on a state-of-the-art SSD and co-

exist with the traditional block interface

▪ Standardized in T10 SCSI (SAS SSDs) in 2015

▪ Standardized in NVMe 1.3 in 2017

31

