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▪ Several assumptions are no longer valid

Assumptions Disks SSDs

Sequential accesses much faster than random

No write amplification

Little background activity

Media does not wear down

Distant LBNs lead to longer access time

Source: A. Rajimwale et al., "Block Management in Solid-State Devices," USENIX ATC, 2009.
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▪ Sector Translation Layer

• Address mapping

• Garbage collection

• Wear leveling

▪ Block Management Layer

• Bad block management

• Error handling

▪ Low Level Driver

• Flash interface
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▪ Flash cards or flash SSDs are already equipped with FTL

▪ Benefits?

▪ Limitations?

▪ Hints from file systems or applications can be useful

• TRIM, Stream, ...
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▪ What happens on file deletion?
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▪ ATA interface standard (T13 technical committee)

• "The data in the specified sectors is no longer needed"

• Originally proposed as a non-queued command, but SATA 3.1 introduces the 

queued TRIM command

• UNMAP, WRITE SAME with unmap flag in SCSI, DEALLOCATE in NVMe

▪ Types

• Non-deterministic Trim: reads may return different data

• Deterministic Trim: reads return the same data

• Deterministic Read Zero after Trim: all reads shall return zero

▪ TRIM commands can be automatically issued on file deletion or format 

▪ fstrim: discard unused blocks on a mounted file system
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▪ FusionIO DFS,  Apple APFS / HFS+

▪ Benefits?

▪ Limitations?
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▪ Kernel manages raw flash memory directly

▪ Cross-layer optimization possible

• Example: file data indexing

– Legacy file system: <inode #, block #> → <LBA> → <flash block #, flash page #>

– Flash file system: <inode #, block #> → <flash block #, flash page #>

• What else?

▪ Used in old embedded systems, but not so successful

• JFFS2, YAFFS, UBIFS, ...

• Why?
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▪ Datacenter applications want to manage the underlying flash directly

• Why?

▪ Diverse proposals on flash interface

• Software Defined Flash [ASPLOS '14]

• Application-managed Flash [FAST '16]

• Open-Channel SSD [FAST '17]

• ZNS(Zoned-NameSpace) SSD [ATC '21]
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▪ Device-level File System [FAST '18]

• Move file system into the device hardware

• Use device-level CPU and memory for DevFS

• Apps. bypass OS for control and data plane

• DevFS handles integrity, concurrency, 

crash-consistency, and security

• Achieves true direct-access

▪ Challenges

• Limited memory inside the device

• DevFS lack visibility to OS state



The Multi-streamed 

Solid-State Drive

Some of slides are borrowed from the authors’ presentation.

(J.-U. Kang et al., HotStorage, 2014)
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▪ Previous write patterns (= current state) matter
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▪ Mapping data with different lifetime to different streams
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▪ High GC efficiency → Performance improvement
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▪ Write operations when Cassandra runs
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▪ Just one stream ID (= conventional SSD)



4190.568 Advanced Operating Systems | Fall 2021 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 21

▪ Separate application writes (ID 1) from system traffic 

(ID 0)
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▪ Use three streams; further separate Commit Log
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▪ Give distinct streams to different tiers of SSTables
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▪ Cassandra’s normalized update throughput

• Conventional “TRIM off”
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▪ Cassandra’s normalized update throughput

• Conventional “TRIM on”
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▪ Cassandra’s normalized update throughput

• “Multi-App” (System data vs. Cassandra data)
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▪ Cassandra’s normalized update throughput

• “Multi-Log” (System data vs. Commit-Log vs. Flushed data)
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▪ Cassandra’s normalized update throughput

• “Multi-Data” (System data vs. Commit-Log vs. Flushed data vs. Compaction Data)
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▪ Cassandra’s GC overheads
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▪ Cassandra’s cumulated latency distribution

• Multi-streaming improves write latency

• At 99.9%, Multi-Data lowers the latency by 53% compared to Normal
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▪ Mapping application and system data with different lifetimes to SSD 

streams

• Higher GC efficiency, lower latency

▪ Multi-streaming can be supported on a state-of-the-art SSD and co-

exist with the traditional block interface

▪ Standardized in T10 SCSI (SAS SSDs) in 2015

▪ Standardized in NVMe 1.3 in 2017
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