Jin-Soo Kim
(jinsoo.kim@snu.ac.kr)

Systems Software &
Architecture Lab.

Seoul National University

Fall 2021

KVM

Popek/Goldberg Theorem

For any conventional third-generation computer, a virtual machine monitor may be
constructed if the set of sensitive instructions for that computer is a subset of the
set of privileged instructions.

-- G. Popek and R. Goldberg, "Formal Requirements for Virtualizable Third-Generation Architectures," CACM, 1974.

* An instruction is control-sensitive if it can update the system state

* An instruction is behavior-sensitive if its semantics depend on the actual
values set in the system state

= An instruction is privileged if it can only be executed in supervisor
mode and causes a trap when attempted from user mode

{control-sensitive} U {behavior-sensitive} C {privileged}.

Violations in |A-32

= |7 problematic instructions that are sensitive and yet unprivileged

Group Instructions

Access to interrupt flag pushf, popf, iret

Visibility into segment descriptors lar, verr, verw, 1lsl

Segment manipulation instructions | pop <seg>, push <seg>, mov <seg>

Read-only access to privileged state | sgdt, sldt, sidt, smsw

Interrupt and gate instructions fcall, longjump, retfar, str, int <n>

Intel Virtualization Technology (VT-x)

A central design goal for Intel Virtualization Technology is to eliminate the need for
CPU paravirtualization and binary translation techniques, and thereby enable the
implementation of VMMs that can support a broad range of unmodified guest
operating systems while maintaining high levels of performance.

-- R. Uhlig et al., "Intel Virtualization Technology," IEEE Computer, 2005

" Virtual machine extensions (VMX) introduced in 2005

" |3 new instructions are added

* Two new VI-x operating modes: VMX non-root and VMX root
* Two new transitions: VM entry and VM exit

* Extended Page Tables (EPT) added in 2008 for memory virtualization

Guest applications

= VMX root/non-root operations 3 i

Guest operating system

* AVMM runs in VMX root operation —‘

* Guest OSes run in VMX non-root operation

* Both support all four privilege levels

I_..N m

= Transitions
* VM entry: VMX root = VMX non-root
e VM exit: VMX non-root =2 VMX root

opouw J00J-UON

ex1t enter

apouw J00Yy I

4190.568 Advanced Operating Systems | Fall 2021 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

VMCS

®* Virtual-Machine Control Structure

* A new data structure that manages VM entries and VM exist and processor
behavior in VMX non-root operations

* Guest-state area vs. host-state area
* VM entries load processor state from the guest-state area
* VM exits save processor state to the guest-state area and then load processor
state from the host-state area
* Processor behavior changes in VMX non-root operation

* Some instructions cannot be executed in VMX non-root operation because they
cause VM exists unconditionally

* Other instructions, interrupts and exceptions can be configured to cause VM exists
conditionally (using VM-execution control fields in VMCY)

4190.568 Advanced Operating Systems | Fall 2021 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

Extended Page Tables (EPT)

= VMM maintains PPN->MPN mappings in “nested page tables”

* For every PPN (guest-physical) accessed during guest page table walk, the hardware
also walks nested page tables to determine the corresponding MPN (host-physical)

* TLB still maps guest-virtual pages to host-physical pages

VA—PA mappin _EPT | I I I I !
o L NS A N &
i §(0) (o) @) (i) @-(an)
J Y Y Y Y Y O = guest PTE
TLB ’ L NG (" A
VA > (2/ \D \@ 67/ \22
Y Y Y Y Y
guest GG (o Ge () (e
VMM NN s NN
ORRORRCORRORNC)
! ! ! e B
->Qf) [?»? 10_»5){) 15 »(ai) \20J ntry
PA_>MA mapplng idx 4 idx 3 1dx 2 dx 1 offset

Source: E. Bugnion et al., Hardware and Software Support for Virtualization, 2017.
4190.568 Advanced Operating Systems | Fall 2021 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 7

KVM

* Developed by Qumranet

Has been part of the Linux kernel since
v2.6.20

Later Qumranet was acquired by Red Hat

Officially supported hypervisor of major
commercial Linux distributions

Requires hardware virtualization capable
processors to operate

KVM turns the standard Linux kernel into a
hypervisor

4190.568 Advanced Operating Systems | Fall 2021 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

gemu-kvm
(user mode code)

~~ioctl() |interface -

kvm.ko (‘/dev/kvm’)
(kernel mode code)

kvm-amd.ko kvm-intel.ko

vendor-/technology-specific (AMD SVM, Intel VMX)

Source: H. D. Chirammal et al., Mastering KVM Virtualization, 2016
8

QEMU

= Open source machine emulator and

virtualizer (o —
* Developed by Fabrice Bellard x|

Drivers in guest Kernel

* Runs OSes and programs for another CPU ISA using
dynamic binary translation or direct execution

* Emulates a set of devices: p
. . [KVM Kernel Module
disks, networks,VGA, PCle, serial & parallel ports,
Filesystem and Block Devices
USB’ e v Do LINUX KERNEL
N

* Runs other management tasks: i
creating and initializing a virtual machine, BIOS,VM

\ HARDWARE \

(cruo)
Mmanagement, etc. o

Source: H. D. Chirammal et al., Mastering KVM Virtualization, 2016
4190.568 Advanced Operating Systems | Fall 2021 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 9

KVM Architecture

= KVM kernel module (kvm.ko)

* Handles the basic CPU platform emulation issues

* CPU / memory / interrupt virtualization
* Some chipset emulation (APIC, IOAPIC, etc.)

= QEMU-KVM

* For each and every VM, there is a QEMU process running in the host system
Virtual CPUs are executed in the host kernel as POSIX threads
Guest RAM is assigned inside the QEMU process's virtual address space
Worker threads (iothreads) for virtual network and disk devices
QEMU talks to the KVM kernel module using ioctls on /dev/kvm

4190.568 Advance d Operating Systems | Fall 2021 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

10

Execution Flow

User space
QEMU
VM
(quest system)
1) ioctl() 4) Return
\ /\ — /
L N
0) /dev/kvm 2) VM Entry 3) VM Exit
\ Z
Y
L KVM kernel module]
Linux kernel (hypervisor)

4190.568 Advanced Operating Systems | Fall 2021 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

Source: Y. Goto, "Kernel-based Virtual Machine Technology", Fujitsu Sci. Tech. J., 2011

11

