Jin-Soo Kim
(jinsoo.kim@snu.ac.kr)

Systems Software &
Architecture Lab.

Seoul National University

Fall 2021

Lottery Scheduling

(Carl Waldspurger et al., OSDI '94)

Priority-based Scheduling Schemes

* The notion of priority does not provide the encapsulation and
modularity properties

* The assignment of priorities and dynamic priority adjustment schemes
are ad-hoc

* Adjusting scheduling parameters is at best a black art
* Poorly understood
" Schedulers are complex and difficult to control
" Priority inversion problem

" Fair share schedulers are implemented by adjusting priorities with a
feedback loop (relatively coarse control over long-running applications)

Goals

= Flexible and responsive control over the relative execution rates of
computations

* Proportional sharing

* Support for modular resource management

= Simple and efficient implementation

Lottery Scheduling

= A randomized resource allocation mechanism based on tickets and
lotteries

" Tickets
* Encapsulate abstract, relative, and uniform resource rights
* Abstract, Relative, and Uniform

* Similar to the properties of money

" | otteries
* Scheduler picks the winning ticket randomly, and gives the owner the resource

* Probabilistically fair
* The scheduling algorithm is randomized

Performance Characteristics

* The number of lotteries won by a client:

* Binomial distribution

* The winning probability p (total T tickets): P =1t/T

* The expected number of wins w after n lotteries:
E[w] = np oy, =np(1-p) o,/Elwl=(1-p)/np

* A client's throughput is proportional to its ticket allocation

* The number of lotteries required for a client's first win:

* Geometric distribution
* The expected number of lotteries n that a client must wait before its first win:

E[n]=1/p or = (1 —p)/p*

* The client's average response time is inversely proportional to its ticket allocation

Performance Characteristics (cont'd)

* The accuracy improves with /n
* Need frequent lotteries
* Mostly accurate, but short-term inaccuracies are possible

= No starvation

* Any client with a hon-zero number of tickets will eventually win a lottery

= Responsive

* Any changes to relative ticket allocations are immediately reflected in the next
lottery

4190.568 Advance d Operating Systems | Fall 2021 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

Example: Fairness

* Two Dhrystone (CPU-intensive) benchmark tasks for 60 sec.

15 =
* The variance is greater for larger '
ratios:

£
S J °
- °
* 1342:1 (for 10:1) g 10- .
= o 8
S .
. - °
" Even larger ratios converge over 3 : o °
. . =] o
longer time intervals: 2 3
. S - e
* 19.08: 1| (for 20 : I, for 3 min.) : %
1 &
O U E | |
0 2 4 6 3

Allocated Ratio

10

Example: Multimedia Applications

* Three mpeg_play video viewers

* Not exact
 1.92:150:1 (3:2:1)
e [.92:1:1.533:1:2)

" Due to the round-robin processing
of client requests by the single-
threaded XI IR5 server

* 3.06:2.04: 1 with -no-display option

Cumulative Frames

600 —
400 —
200

0

3:2:1

Time (sec)

Compensation Tickets

* What happens if a thread is /O-bound and blocks before its quantum
expires!?

" |f a thread consumes only a fraction f of the quantum, its tickets are
inflated by |/f until the next time you win

* If A on average uses |/5 of a quantum, its tickets will be inflated 5x and it will win 5
times as often and get its correct share overall

Ticket Transfer

* |f you are blocked on someone else, give them your tickets

= Useful for client-server system

e Server has no tickets of its own

Clients give their tickets to server threads during RPC

Server's priority is the sum of the priorities of all of its active clients

Server can use lottery scheduling to give preferential service to high-priority clients

Clients also have the ability to divide ticket transfers across multiple servers on
which they may be waiting

= Avoid priority inversion problem

10

Ticket Inflation

= Make up your own tickets (print your own money)

" Only works among mutually trusting clients
. Why?
" Presumably works best if inflation is temporary

= Allows clients to adjust their resource allocations without explicit
communication

= Examples

* Monte-Carlo algorithm: dynamically adjust the number of tickets as a function of its
current relative error

* Graphics-intensive programs: a large share to display a crude outline initially, and
then a smaller share to compute details

11

Ticket Currencies

" Express resource rights in units that are local to each group of mutually
trusting clients

= A unique currency is used to denominate tickets within each trust
boundary

* Each currency is backed, or funded, by tickets that are denominated in more
primitive currencies

* The effects of inflation can be locally contained by maintaining an exchange rate

= Useful for flexible naming, sharing, and protecting resource rights

12

Ticket Currencies: Example

............. mount
10007 s
base-{~"
ticket

currency

Aist of

backing
tickets

unique

active
amount

tickets

base
~__3000
AN
1000 2000
base base
7 ~
alice bob
200 . 100
N \
200 100
alice bob
\ |
task2 task3
/N__500 v 100
/O \
200 | | 300 100
task2| |task2 task3
) /4 \]
thread? thread3 thread4

13

Ticket Currencies: Load Insulation

6000000 —

= 5 Dhrystone tasks

= Two currencies A and B 4000000 =

* Funded equally

2000000

Cumulative Iterations

= Task group A

. Al with 100.A .
. A2 with 200.A 6000000 -

* Task group B
+ Bl with 100.B
+ B2 with 200.B
+ Later, added B3 with 300.B N

4000000 —

2000000

Cumulative Iterations

Time (sec)

14

Ticket Currencies: Lock Funding

waiting threads

" A lottery-scheduled mutex has blocked on lock 7
* Mutex currency : ! |
3 |
* Inheritance ticket | i
t7 t8
8 1 Y / 1
iy \ ; /
" Waiting threads fund the mutex currency) ‘ :
t7 t8
* When done, mutex holder conducts a e
lottery to determine the next holder lock | lock currency
‘lr inheritance
lock ticket

2 lock owner

15

Discussion

= What's good?

= What's bad?

4190.568 Advanced Operating Systems | Fall 2021 | Jin-Soo Kim (jinsoo.kim@snu

.ac.kr)

16

