
Lottery Scheduling

Jin-Soo Kim
(jinsoo.kim@snu.ac.kr)

Systems Software &
Architecture Lab.

Seoul National University

Fall 2021

(Carl Waldspurger et al., OSDI '94)

4190.568 Advanced Operating Systems | Fall 2021 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 2

▪ The notion of priority does not provide the encapsulation and

modularity properties

▪ The assignment of priorities and dynamic priority adjustment schemes

are ad-hoc

• Adjusting scheduling parameters is at best a black art

▪ Poorly understood

▪ Schedulers are complex and difficult to control

▪ Priority inversion problem

▪ Fair share schedulers are implemented by adjusting priorities with a

feedback loop (relatively coarse control over long-running applications)

4190.568 Advanced Operating Systems | Fall 2021 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 3

▪ Flexible and responsive control over the relative execution rates of

computations

▪ Proportional sharing

▪ Support for modular resource management

▪ Simple and efficient implementation

4190.568 Advanced Operating Systems | Fall 2021 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 4

▪ A randomized resource allocation mechanism based on tickets and

lotteries

▪ Tickets

• Encapsulate abstract, relative, and uniform resource rights

• Abstract, Relative, and Uniform

• Similar to the properties of money

▪ Lotteries

• Scheduler picks the winning ticket randomly, and gives the owner the resource

• Probabilistically fair

• The scheduling algorithm is randomized

4190.568 Advanced Operating Systems | Fall 2021 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 5

▪ The number of lotteries won by a client:

• Binomial distribution

• The winning probability p (total T tickets):

• The expected number of wins w after n lotteries:

• A client's throughput is proportional to its ticket allocation

▪ The number of lotteries required for a client's first win:

• Geometric distribution

• The expected number of lotteries n that a client must wait before its first win:

• The client's average response time is inversely proportional to its ticket allocation

𝒑 = Τ𝒕 𝑻

𝑬 𝒘 = 𝒏𝒑 𝝈𝒘
𝟐 = 𝒏𝒑(𝟏 − 𝒑) Τ𝝈𝒘 𝑬 𝒘 = Τ(𝟏 − 𝒑) 𝒏𝒑

𝑬 𝒏 = Τ𝟏 𝒑 𝝈𝒏
𝟐 = Τ(𝟏 − 𝒑) 𝒑𝟐

4190.568 Advanced Operating Systems | Fall 2021 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 6

▪ The accuracy improves with 𝑛
• Need frequent lotteries

• Mostly accurate, but short-term inaccuracies are possible

▪ No starvation

• Any client with a non-zero number of tickets will eventually win a lottery

▪ Responsive

• Any changes to relative ticket allocations are immediately reflected in the next

lottery

4190.568 Advanced Operating Systems | Fall 2021 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 7

▪ Two Dhrystone (CPU-intensive) benchmark tasks for 60 sec.

▪ The variance is greater for larger

ratios:

• 13.42 : 1 (for 10 : 1)

▪ Even larger ratios converge over

longer time intervals:

• 19.08 : 1 (for 20 : 1, for 3 min.)

4190.568 Advanced Operating Systems | Fall 2021 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 8

▪ Three mpeg_play video viewers

▪ Not exact

• 1.92 : 1.50 : 1 (3 : 2 : 1)

• 1.92 : 1 : 1.53 (3 : 1 : 2)

▪ Due to the round-robin processing

of client requests by the single-

threaded X11R5 server

• 3.06 : 2.04 : 1 with -no-display option

3:2:1

3:1:2

4190.568 Advanced Operating Systems | Fall 2021 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 9

▪ What happens if a thread is I/O-bound and blocks before its quantum

expires?

▪ If a thread consumes only a fraction f of the quantum, its tickets are

inflated by 1/f until the next time you win

• If A on average uses 1/5 of a quantum, its tickets will be inflated 5x and it will win 5

times as often and get its correct share overall

4190.568 Advanced Operating Systems | Fall 2021 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 10

▪ If you are blocked on someone else, give them your tickets

▪ Useful for client-server system

• Server has no tickets of its own

• Clients give their tickets to server threads during RPC

• Server's priority is the sum of the priorities of all of its active clients

• Server can use lottery scheduling to give preferential service to high-priority clients

• Clients also have the ability to divide ticket transfers across multiple servers on

which they may be waiting

▪ Avoid priority inversion problem

4190.568 Advanced Operating Systems | Fall 2021 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 11

▪ Make up your own tickets (print your own money)

▪ Only works among mutually trusting clients

• Why?

▪ Presumably works best if inflation is temporary

▪ Allows clients to adjust their resource allocations without explicit

communication

▪ Examples

• Monte-Carlo algorithm: dynamically adjust the number of tickets as a function of its

current relative error

• Graphics-intensive programs: a large share to display a crude outline initially, and

then a smaller share to compute details

4190.568 Advanced Operating Systems | Fall 2021 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 12

▪ Express resource rights in units that are local to each group of mutually

trusting clients

▪ A unique currency is used to denominate tickets within each trust

boundary

• Each currency is backed, or funded, by tickets that are denominated in more

primitive currencies

• The effects of inflation can be locally contained by maintaining an exchange rate

▪ Useful for flexible naming, sharing, and protecting resource rights

4190.568 Advanced Operating Systems | Fall 2021 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 13

4190.568 Advanced Operating Systems | Fall 2021 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 14

▪ 5 Dhrystone tasks

▪ Two currencies A and B

• Funded equally

▪ Task group A

• A1 with 100.A

• A2 with 200.A

▪ Task group B

• B1 with 100.B

• B2 with 200.B

• Later, added B3 with 300.B

4190.568 Advanced Operating Systems | Fall 2021 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 15

▪ A lottery-scheduled mutex has

• Mutex currency

• Inheritance ticket

▪ Waiting threads fund the mutex currency

▪ When done, mutex holder conducts a

lottery to determine the next holder

inheritance
ticket

4190.568 Advanced Operating Systems | Fall 2021 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 16

▪ What's good?

▪ What's bad?

