Jin-Soo Kim
(jinsoo.kim@snu.ac.kr)

Systems Software &
Architecture Lab.

Seoul National University

Fall 2021

Processes and Threads

What is a Process!?

= A(An) of a program in execution

" Program vs. Process?
* The basic unit of protection

= A process is identified using is process ID (PID)

= A process includes
* CPU context (registers)
* OS resources (address space, open files, etc.)
* Other information (PID, state, owner, etc.)

" Process control block

What is a Thread!?

Process 1 Process 1 Process 1

\ | |

= A thread of control:

A sequence of instructions being executed
In 2 program @

= A thread has its own Thread
* Thread ID Iarme
* Set of registers including PC & SP Process
* Stack 1
" Threads share an address space
* Code, Data,and Heap @

Thread

" Separate the concept of a process from its
execution state

Kernel

Why Threads!?

= Concurrency
* Program structure
* Divide large task across several cooperative threads
* Throughput
* By overlapping computation with I/O operations
= Responsiveness
* Can handle concurrent events (e.g., web servers)
= Resource sharing
= Utilization of multi-core architectures

* Allows building parallel programs

Processes vs. [hreads

" A thread is bound to a single process

= A process, however, can have multiple
threads

= Sharing data between threads is cheap;
all see the same address space

* Threads are the unit of scheduling

" Processes are containers in which threads execute

* PID, address space, user and group ID,
open file descriptors, current working directory, etc.

" Processes are static, while threads are dynamic entities

Image source: https://dribbble.com/shots/1395795-factory-cross-section-progress-4

5

Address Space with Threads

PC (T2)—>
PC (T1)—> Code
PC(T3)—
Data
Heap
SP (T2)
Stack
SP (T3
(T3) Stack
SP (T1)

Stack

>

~, code

program

Kernel-level Threads

" OS-managed threads

OS manages threads and processes

All thread operations are implemented in
the kernel

Thread creation and management requires
system calls

OS schedules all the threads

Creating threads are cheaper than creating
processes

Windows, Linux, Solaris, Mac OS X, AlX,
HP-UX, ...

Process

\

Thread

/

\

Kernel
—
Process Thread
table table

User-level Threads

* Threads are implemented at the user level

* A library linked into the program
manages the threads

 Threads are invisible to the OS

* All the thread operations are
done via procedure calls
(no kernel involvement)

e Small and fast:
|0-100x faster than kernel-level threads

e Portable

* Tunable to meet application needs

Process

\

Thread

/

User
space <
=

—

Kernel

space Kernel .

/ \
Run-time Thread Process

system table table

Threading Model: One-to-One (1:1)

= Each user-level thread
maps to a kernel thread

user thread
= Most popular

= Windows XP/7/10,
OS/2, Linux, Solaris 9+

D6 E)@ —-

9

Threading Model: Many-to-One (N:1)

" Many user-level threads mapped

to a single kernel thread

user thread

* Used on systems that do not
support kernel-level threads

= Solaris Green Threads,
GNU Portable Threads

kernel thread

Threading Model

Allows many user-level
threads to be mapped to
many kernel threads

Allows the OS to create
a sufficient number of
kernel threads

Solaris prior to v9,
IRIX, HP-UX, Trué4

: Many-to-Many (M:N)

% % % % user thread
e 9 9 kernel thread

threads per Many
addr space:

Embedded Systems

without OS -
MS/DOS Traditional UNIX
Early Macintosh
Many Embedded Modern OSes
OSes (Mach, Windows, Linux,
(VxWorks, QNX, Mac OS X, HP-UX,

uClinux, nC/0S-lI, ...) Solaris, AlX, ...)

Processes and Threads in Linux

Linux Tasks

» Tasks

In Linux, tasks represent both processes and threads

Each task is described using a task structure

" struct task struct

@ include/linux/sched.h

Everything the kernel has to know about a task
About 3.5KB in size (Kernel 5.10.61 on x86 64)
Allocated by the slab allocator (cf. /proc/slabinfo)

Task list (t->tasks): the list of task structures in a
circular linked list

struct task_struct {
#ifdef CONFIG_THREAD_INFO_IN_TASK
/*
* For reasons of header soup (see current_thread_info()), this
* must be the first element of task_struct.
Sy
struct thread_info thread_info;
#endif
/* -1 unrunnable, @ runnable, >@ stopped: */
volatile long state;

/*
* This begins the randomizable portion of task_struct. Only
* scheduling-critical items should be added above here.
S

randomized_struct_fields_start

void *stack;

refcount_t usage;

/* Per task flags (PF_*), defined further below: */
unsigned int flags;

unsigned int ptrace;

#ifdef CONFIG_SMP
struct llist_node wake_entry;
int on_cpu;

#ifdef CONFIG_THREAD_INFO_IN_TASK
/* Current CPU: */

unsigned int cpu;
#endif

14

Task Structure

task_struct
thread info

thread flags and state
task state state
stack

’ tasks

task list <«

A 4

Kernel
stack

8KB for IA-32
16KB for x86_64

fs

files_struct

signal

sighand

>

mm_struct
g —
fs_struct —
—>
—>

4190.568 Advanced Operating Systems | Fall 2021 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

—_—
—> R
signal_struct
- —>
—>
—

15

Finding the Current Task

» get current()

* Per-cpu variable called current_task
is maintained

Ox015fbfff f \
= Old way Kernel
 When CONFIG_THREAD INFO_IN TASK=n Sack
* Put the thread info at the top of - <—current
the kernel stack eroteTheee O E
* Get current thread_info from the %7 - i E task_struct
stack pointer o . | --mn= thread_info
* thread _info has a pointer to the thread_info)'E:__'_'_'_'_'_"_i
0x015fa000 current_thread_info()

task struct

4190.568 Advanced Operating Systems | Fall 2021 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

16

Execution Contexts

" Process context
* Process enters kernel space by a system call or an exception
* The kernel is executing on behalf of the process
* The current variable is valid

" |nterrupt context
* The system is executing an interrupt handler
* There is no task tied to interrupt handlers
* The current variable should not be used (except for the scheduler)

4190.568 Advanced Operating Systems | Fall 2021 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

17

Creating a New Process

» sys fork() =2 _do _fork() (@ kernel/fork.c)
= copy_process()

Check parameters

Invoke dup_task struct() to create a new kernel stack and task struct for
the new process

Make sure the child will not exceed the resource limit
Invoke sched_ fork() to initialize the scheduler-related data structure

Invoke copy files(), copy fs(),copy sighand(), copy signal(),
copy_mm(), etc. to copy those data structures

Invoke copy thread tls() to initialize user registers of the child
Allocate a new PID by calling alloc_pid()

4190.568 Advanced Operating Systems | Fall 2021 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 18

Creating a New Process (cont'd)

= copy_process() (cont'd)
* Initialize the fields for parenthood relationship and thread group
* Invoke attach _pid() to insert the child PID to the PID hash table

* wake up new_task()
* Invoke activate task() to insert the child into the runqueue

= Returns the PID of the child

4190.568 Advance d Operating Systems | Fall 2021 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

19

Linux Threads

" Linux implements all threads using standard tasks
* There is no concept of a thread

* A thread is merely a task that shares certain resources with other tasks

= One-to-one model

* Linux creates a task for each application thread using clone() system call

" Sharing resources

* Resources to be shared can be specified in the f1lags argument in clone()
CLONE_VM: parent and child share address space
CLONE_FILES: parent and child share open files

CLONE_FS: parent and child share filesystem information
CLONE_SIGHAND, ... (cf) $ man 2 clone

4190.568 Advance d Operating Systems | Fall 2021 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

20

POSIX Compatibility

= Basic difference in multithreading model
* POSIX:a single process that contains one or more threads

* Linux: separate tasks that may share one or more resources

= Resources

* POSIX: the following resources are specific to a thread, all other resources are
global to a process
— CPU registers, user stack, blocked signal mask

* Linux: the following resources may be shared between tasks via clone(), while all
other resources are local to each task
— Address space, signal handlers, open files, working directory, ...

» getpid(),fork(),exec(),exit(), signals, suspend/resume,...?

4190.568 Advanced Operating Systems | Fall 2021 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

21

Thread Group

= A set of threads that act as a whole with regards to some system calls

* The first thread (task) in a process becomes the thread group leader

* A new thread created with CLONE_THREAD is placed in the same thread group
as the calling thread

* Handling process-based system calls:
» getpid() returns the PID of the thread group leader (t->tgid)

* On exec(), all threads other than the thread group leader are terminated, and the
new program is executed in the thread group leader

* After all of the threads in a thread group terminate, a SIGCHLD signal is sent to
the parent process

* Signals may be sent to a thread group as a whole

22

Kernel Threads

= Standard tasks that exist solely in the kernel space
* Kernel threads share the kernel's address space

* They operate only in the kernel space and do not context switch into the user
space

* Kernel threads are, however, schedulable and preemptable as normal tasks
* Used to perform certain tasks in background (e.g., kswapd)

" Creating a kernel thread

- pid_t kernel thread(int (*fn)(void *), void *arg, unsigned long flags)
* kthread APl @ include/linux/kthread.h (e.g., kthread create(),..)

4190.568 Advanced Operating Systems | Fall 2021 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 23

