Jin-Soo Kim
(jinsoo.kim@snu.ac.kr)

Systems Software &
Architecture Lab.

Seoul National University

Fall 2020

\\\@

(N. Megiddo and D. S. Modha, FAST '03)

LRU vs. LFU

= | RU (Least Recently Used)
* O(I) complexity, no frequency considered

miss: new page

hit miss: Evict if |L] = ¢

MRU

* LFU (Least Frequently Used):

* O(log n) complexity, no attention to recent history, no adaptability
miss: new page

]
eue v eue
RASRE AR S AR RN
g . . A .
o .. P .

L >
miss: Evictif |L| =c¢
MFU LFU

4190.568 Advanced Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

FBR [SIGMETRICS '90]

* Frequency-Based Replacement
* Three sections in the LRU list: New, Middle, and Old
* Replaces the page with the smallest reference count in the Old section (O(log n))

* Need to rescale the reference counters:VWhenever the average reference counter
exceeds A,, .., every reference counter is reduced to [C /2]

e Tunable parameters: Fous Fo1d Amax
miss: new page hit (count++)

(count = 0) n;iss: EviI::t the page Wit|:
hit (count++) the smallest countin O
—hit{eaunt unchangh

MRU LRU
| New (F,., *c) Middle old (F,,,*c)

A 4

4190.568 Advanced Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

LRU-2 [sicmMoD '93]

» LRU-K . b,(5,2)
* Backward K-distance b;(p, K): b,(5,1) :
the distance backward from the time t to < |
the K-th most recent reference to the 5 5
page p (oo if p does not appear K times) t

* Replace the page whose backward K-distance is the maximum of all pages
* LRU-I = classical LRU

* O(log n) complexity
" A crucial tunable parameter: Correlated Information Period (CIP)

* The time a page that has only been seen once recently should be kept in the cache
to avoid "Early Page Replacement”

2Q [VLDB '94]

= Am for hot pages
= A1,;, for pages of potentially correlated accesses
= A1,,; for pages that have been accessed once (metadata only)

* O(l) complexity, two tunable parameters: K;,, and K,,;

miss: new page
hit J, hit (noop)(\ hit

MRU LRU FRONT TAILFRONT TAIL
miss: Evict miss: Evict miss: Delete
if |A1, | <K, if |A1, | > K, if |A1,,| > K,,and

IAloutI > Kout

max K;, pages | max K, pages |
| | 1

5

LRFU [SIGMETRICS '99]

" | east Recently/Frequently Used

* Each block x is associated with the CRF (Combined Recency and

Frequency) value or C(x):

C(X) = 1+ Z_AC(x) if xisreferenced at time t

27AC (x) otherwise

= Replace the page with the smallest C(x)
* As A approaches to 0, C(x) is simply the number of occurrences of x = LFU
* As A approaches to I, C(x) emphasizes recency = LRU

* The performance depends crucially on A (adaptive version exists)

* Other tunable parameter: c (for correlated references)

* Computation overhead (up to 50x over LRU)

LIRS [SIGMETRICS '02]

* | ow Inter-reference Recency Set

* Inter-Reference Recency (IRR) or reuse distance: the number of other blocks
accessed between two consecutive references to the block

* High IRR bocks are candidates for replacements

= Two stacks are maintained
* A large LRU stack (L,;;-s) for low IRR (LIR) resident blocks
* A small LRU stack (Ly;;-s) for high IRR (HIR) blocks
* The large stack also records resident/nonresident high IRR blocks

* Stack pruning operation removes the HIR blocks in the stack bottom

* Average-case rather than worst-case constant-time overhead

* Tunable parameters: Ly ;¢ (normally 1%), R,,, 4, (for LIR/HIR switching)

DBL(2¢)

miss: new page

miss: Evict if
|L,] <cand |L,|+|L,] = 2¢ hit hit

miss: Evict if
L] =c

— L, L,

11—

LRU MRU MRU

LRU

2c pages

" OS|L1|+|L2|S2C,OS|L1|SC,0S|L2|S2C

4190.568 Advanced Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

(c) € Il(c)

MRU MRU

w=T7]+T7 (cpages)

2c pages

« If L, UL,| <c, then BF = BT = ¢
» [f[L;UL,| =c, then [T UT}| =c

LRU(c) € II(c)

LRU LRU LRU LRU
BZ TZ Tl Bl

LRU MRU MRU LRU

= TRV + TLRU (c pages)

* The most recent ¢ pages will always be in DBL(2c¢)
* When the LRU item in L, is evicted: L; must contain exactly c items

* When the LRU item in L, is evicted: L, must contain at least c items

TLRU

* There must exist a dynamic partition of lists L; and L, into lists 7",

BiRY, T7RY 'and BZRY such that the conditions for (¢) hold

Fixed Replacement Cache: FRC,(c)

= Keep exactly p pages in T; , and exactly ¢ — p pages in T,

* Parameter p: target size for T1p

c - p pages | |___Ppages |

2c pages

FRC,(c): Cache Hit

u Xt € Tl,p U TZ,p
-~ Move x; to MRU position of T ,,

LRU MRU MRU

LRU

I Lz I I Ll

4190.568 Advanced Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

12

FRC,(c): Cache Miss in B, ,

" X; € By
= Replace(x;, p), and move x; from B, ,, to MRU position of T ,,
= Replace(x, p)

¢ If (Tl,p * @ a.nd ((|T1’p| > p) or (Xt € Bz’p and |T1’p| — p))’
move the LRU page in T; ,, to B,

* Otherwise, move the LRU page in Tz,p to Bz’p
BZ T TZ

RN

LRU MRU

| LZ I I L1

4190.568 Advanced Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

FRC,(c): Cache Miss in B,

" X € By,
- Replace(x;, p), and move x; from B, ,, to MRU position of T, ,,

LRU MRU MRU LRU

| L, o L, |

4190.568 Advanced Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 14

FRC,(c): Other Cache Miss |

" x € Ly ULyand [L,]| =
o if (|T1,p| < ¢): Delete LRU page in B, ;, and Replace(x;, p)

new page

? Delete

Xt

Bz T

LRU MRU MRU LRU

. if (|T1,p| = c): Delete LRU page in T} ,,

Bz Ty

LRU MRU MRU LRU

new page

Delete

4190.568 Advanced Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 15

FRC,(c): Other Cache Miss ||

- xtEL1UL2 and |L1| <cC
* if (|L1| + |Ly| = c): Delete LRU page in B2 if |L| + |L,| = 2¢,and Replace(x;, p)

new page

?

U R MRU MRU 5 LRU
o if (|L1| + |L2| < C): new page

Bz, i By

LRU MRU MRU LRU

4190.568 Advanced Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

ARC

" For a given value of p, ARC behaves exactly like FRC,

* ARC continuously adapts and tunes p in response to a workload

" | earning rates
* "Invest” in the list that is performing the best

* Onahitin Bl,we need to increase T| = p increased by §; = {

* On a hit in B2, we need to increase T2 = p decreased by §,= {

1
|B21/1B1|

1
|B11/1Bx]

if |B1| = |B,|

otherwise

if |B,| = |B4|

otherwise

17

ARC(c): Cache Hit

" x; €T UT,
- Move x; to MRU position of T,

LRU MRU MRU

LRU

I Lz I I Ll

4190.568 Advanced Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

18

ARC(c): Cache Miss in B,

" x; € By
1 if |IB1] = |B,|

le I/IBlI otherwise
—> Replace(x, p), and move x; from B; to MRU position of T,

- Update p = min{p + 61, c} where §; = {

LRU MRU

LRU

I LZ I I Ll

4190.568 Advanced Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

19

ARC(c): Cache Miss in B,

" x; €D,
1 if |B2| = |B4|
IBlI/IBZI otherwise

—> Replace(x, p), and move x; from B, to MRU position of T,

- Update p = max{p — §,, 0} where §,= {

LRU MRU MRU LRU

I LZ I I Ll

4190.568 Advanced Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

20

ARC(c): Other Cache Miss |

= x, €L, UL,and |L{| =c
* if (|T1| < c): Delete LRU page in B; and Replace(x;, p)
new page

Delete

Xt

B | T2

LRU MRU MRU LRU

* if (|T,| = c): Delete LRU page in T;
new page

Delete

B [T2

LRU MRU MRU LRU

4190.568 Advanced Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 21

ARC(c): Other Cache Miss I

- xtEL1UL2 and |L1| <cC
e if (IL{| + |L,| = c): Delete LRU page in B2 if [L;| + |L,| = 2c,and Replace(x;, p)

new page
?
LRU) MRU MRU 9 LRU

o if (ILy] + |L,] < c):

new page

LRU MRU MRU LRU

4190.568 Advanced Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

Hit Ratios

* ARC outperforms online algorithms (LRU, FBR, LFU, LIRS, MQ)
* ARC performs as well as LRU-2,2Q, LRFU which use the best offline

parameters
OLTP
c | LRU | ARC| FBR LFU LIRS MQ LRU-2 2Q LRFU MIN
ONLINE OFFLINE

1000 | 32.83 | 3893 | 3696 2798 3480 37.86 39.30 40.48 140.52] | 53.61
2000 | 4247 | 46.08 | 4398 3521 4251 44.10 45.82 46.53 | 46.11 60.40
5000 | 53.65 | 5525 5353 44776 47.14 54.39 54.78 55.770 [56.73| | 68.27
10000 | 60.70 | 61.87 | 62.32 5215 6035 61.08 62.42 62.58 | 63.54] |73.02
15000 | 64.63 | 65.40] 65.66 56.22 6399 6438l 65.22 65.82 |.67.06) |75.13

23

ARC vs. LRU

Hit Ratio (%)

Hit Ratio (%)

P2 P3
T T T
4 641 g
64t
2l
R2r
16
2 16 9
© Jof
¢ c ef
I ARC =
I I ARC
8F 4k
LRU
LRU
s ol
4k
05 .
L L L 1 L L L 1 L L L 1
1024 4096 16384 65536 262144 1024 4006 16384 65536 262144 1024 4096 16384 85536 262144
Cache Size (Number of 512 byte Pages) Cache Size (Number of 512 byte Pages) Cache Size (Number of 512 byte Pages)
P5 P7
T T
4 cal
2l
ol
16
) 0
ol ARC g g 4l ARC ‘
I I
s
LRU ’
BF LRU
oF
)) .) | | | | | | | |
1028 2096 16384 65536 262144 1024 4006 16384 65536 262144 1024 4096 16384 65536 262144

Cache Size (Number of 512 byte Pages)

4190.568 Advanced Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

Cache Size (Number of 512 byte Pages)

Cache Size (Number of 512 byte Pages)

24

ARC vs. FRC

Workload ¢ space | LRU ARC FRC
MB OFFLINE

Pl 32768 16 | 16.55 28.26 29.39

P2 32768 16 | 1847 27.38 27.61

P3 32768 16] N2 17.60

P4 32768 16 524 11.24 9.11

PS5 32768 16 6.73 14.27 14.29

P6 32768 16 424 23.84 22.62

P7 32768 16 345 13.77 14.01

P8 32768 16 | £7.18° 27.51 28.92

P9 32768 16 828 19.73 20.28

P10 32768 16 2.48 9.46 9.63

P11 32768 16 | 2092 2648 26.57

P12 32768 16 893 1594 15.97

P13 32768 16 7.83 16.60 16.81

P14 32768 16 | 15.73 20.52 20.55
ConCat 32768 16 | 1438 21.67 21.63
Merge(P) 262144 128 | 38.05 3991 39.40
DS1 | 2097152 1024 | 11.65 22.52 18.72
SPCI 1048576 4096 9.19 20.00 20.11

S1 524288 2048 | 23.71 3343 34.00

52 524288 2048 | 2591 40.68 40.57

S3 524288 2048 | 25.26 40.44 40.29
Merge(S) | 1048576 4096 | 27.62 40.44 40.18

4190.568 Advanced Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

25

Adaptation

P4

32768 T T y

* Parameter p keeps fluctuating
between 0 to ¢ (32768 pages)

* Such fluctuations occur as many s
times as dictated by the nature
of the workload without any
a priori knowledge or offline
tuning

1

16384 -

Target Size for List T,

* ARC continually adapts and o |

reconfigures itself | |
)

|
2000000 6000000 10000000 14000000 19776090
Virtual Time (Request Number)

< C @ patentsgoogle.com

To ARC or Not to ARC...

Google

O

System and method for implementing an adaptive replacement cache policy

Abstract

An adaptive replacement cache policy dynamically maintains two lists of pages, a recency list and a
frequency list, in addition to a cache directory. The policy keeps these two lists to roughly the same
size, the cache size c. Together, the two lists remember twice the number of pages that would fit in
the cache. At any time, the policy selects a variable number of the most recent pages to exclude
from the two lists. The policy adaptively decides in response to an evolving workload how many top
pages from each list to maintain in the cache at any given time. It achieves such online, on-the-fly
adaptation by using a learning rule that allows the policy to track a workload quickly and effectively.
This allows the policy to balance between recency and frequency in an online and self-tuning
fashion, in response to evolving and possibly changing access patterns. The policy is also scan-
resistant. It allows one-time-only sequential read requests to pass through the cache without
flushing pages that have temporal locality. The policy is extremely simple to implement and requires
only constant-time overhead per request. The policy has negligible space overhead.

Images (12)

AT R

AR IR

=

Classifications

®» GO6F12/123 Replacement control using replacement algorithms with age lists, e.g. queue,
most recently used [MRU] list or least recently used [LRU] list

4190.568 Advanced Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

US6996676B2

United States

B Download PDF a Find Prior At 3 Similar

Inventor: Nimrod Megiddo, Dharmendra Shantilal Modha

Current Assignee : Intel Corp

Worldwide applications

2002 -US 2005 US

Application US10/295,507 events ®

2002-11-14 +« Application filed by International Business
Machines Corp

2002-11-14 = Priority to US10/295,507

2002-11-14 - Assigned to INTERNATIONAL BUSINESS
MACHINES CORPORATION @

2004-05-20 + Publication of US20040098541A1
2006-02-07 = Application granted

2006-02-07 + Publication of US6996676B2
2013-04-16 - Assigned to INTEL CORPORATION @

Status « Active

27

Recency
Frequency X 0] O O 0] O O 0)
Complexity O(1) O(logn) Oflogn) Oflogn) O(logn) O(logn) O(1)? O(1)
Scan resistance X O O O O O O O
Ghost cache X X X O O X O O

Self-tunable — — X X X X X @)

