Jin-Soo Kim
(jinsoo.kim@snu.ac.kr)

Systems Software &
Architecture Lab.

Seoul National University

Fall 2020

Virtual Memory

Virtual Memory: Goals

" Transparency
* Processes should not be aware that memory is shared

* Provides a convenient abstraction for programming (a large, contiguous space)

* Minimizes fragmentation due to variable-sized requests (space)
* Gets some hardware support (time)

* Protection
* Protect processes and the OS from another process
* Isolation: a process can fail without affecting other processes

* Cooperating processes can share portions of memory

4190.568 Advanced Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

(Virtual) Address Space

" Process’ abstract view of memory

* OS provides illusion of private
address space to each process

* Contains all of the memory
state of the process

e Static area

— Allocated on exec()
— Code & Data

* Dynamic area
— Allocated at runtime
— Can grow or shrink
— Heap & Stack

unused

read-only segment
(.init, .text, .rodata)

read/write segment
(.data, .bss)

run-time heap
(managed by malloc)

!
1

A

user stack

(created at runtime)
|

brk

stack
pointer

Paging

= Allows the physical address space of a process to be noncontiguous
* Divide virtual memory into blocks of same size (pages)
* Divide physical memory into fixed-size blocks (frames)
* Page (or frame) size is power of 2 (typically 512B — 8KB)

= Eases memory management
* OS keeps track of all free frames
* To run a program of size n pages, need to find n free frames and load the program
* Set up a page table to translate virtual to physical addresses

* No fragmentation

Paging Overview

Process
B

Process
A

Virtual memory

Physical memory

Frame 11

Page 3 — 5 Frame 10

Page 2 > 7 Frame 9
11

Page 1 7 4 Frame 8

Page 0 Frame 7

Page

tables Frame 6

Page 5 \ Frame 5

Page 4 ~_ g Frame 4
5

Page 3 > 10 Frame 3
2

Page 2 ;: 0 Frame 2
3

Page 1 / Frame 1

Page O Frame O

Address Translation (1)

* Translating virtual addresses

* A virtual address has two parts: - Offset
<Virtual Page Number (VPN), Offset> | |

* VPN is an index into the page table Page Table

* Page table determines Page Frame Number (PFN) | y !

* Physical address is <PFN, Offset> PFN Offset

« Usually, [VPN| >= |PFN|

= Page tables

* Managed by
* Map VPN to PFN
* One Page Table Entry (PTE) per page in virtual address space

4190.568 Advance d Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

VA

PA

Address Translation (2)

CPU

virtual
address

p

physical
address

Physical memory

frame O

frame 1

f

Q ——

A

page table

£ | 0000...00

f]1111..11

Protection

= Separate page table for each process
* No way to access the physical memory of other processes

* On context switch,an MMU register is set to point to the base address of the
current page table (e.g., CR3 in x86, satp in RISC-V)

= Page-level protection

* Memory protection is implemented by associating protection bits with each PTE
* Valid / invalid bit

— “Valid”: the page is in the process’ address space and in use
— “Invalid”: the page is not allocated

* Finer level of protection is possible for valid pages
— Read-only, Read-write, or execute-only protections

4190.568 Advanced Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

PTE

* Page Table Entry

1 1 2

20

V(R |[M| Prot

Page Frame Number (PFN)

* V (Valid) bit says whether or not the PTE can be used
— It is checked each time a virtual address is used

* R (Reference) bit says whether the page has been accessed
— It is set when a read or write to the page occurs

* M (Modify) bit says whether the page is dirty

— It is set when a write to the page occurs

* Prot (Protection) bits control which operations are allowed

— Read,Write, Execute, User/Kernel, etc.

* PFN (Page Frame Number) determines the physical frame

4190.568 Advanced Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

Demand Paging

= OS uses main memory as a (page) cache of all the data allocated by
processes in the system
* Bring a page into memory only when it is needed
* Pages can be evicted from their physical memory frames
* Evicted pages go to disk (only dirty pages are written)
* Movement of pages is transparent to processes

= Benefits

* Less memory needed
* Faster response

* More processes

10

Page Fault

= An exception raised by CPU when accessing invalid PTE
- page faults

* The page is valid but not loaded into memory

 OS maintains information on where to find the contents
* Require disk I/Os

. page faults

* Page faults can be resolved without disk I/O
* Used for lazy allocation (e.g., accesses to stack & heap pages)
* Accesses to prefetched pages, etc.

* |nvalid page faults

* Segmentation violation: the page is not in use

11

Handling Page Faults

O restart (w @ page is on backing store

instruction

L kernel }7

@ issue memory
TERRT reference
- - 1d M,to
- - >V
113101
page table

@ trap (page fault)

@ update PTE

4190.568 Advanced Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

free frame

physical memory

@ bring in
the page

N 4

swap disk

12

Multi-level Page Table: 1A-32

= 32-bit paging
* 32-bit address space, 4KB pages, 4 bytes/PTE
* Want every page table fit into a page

10 10 12 Physical memory
Directory Table Page offset Page frame N
l—l
CR3 . Page irame Page offset »| Page frame 6
> Physical address Page frame 5
J Page frame 4
7 POE Page frame 3

A 4

PTE

Page frame 2

Page frame 1

Page frame 0

Page directory
Page table

Four-level Page Table

* |A-32e paging mode in Intel 64
* 48-bit “linear” address =2 physical address (4KB page)

Linear Address

47 39 38 30 29 2120 12 11 0
| PML4 ‘ Directory Ptr ‘ Directory ‘ Table ‘ Offset |
9 9
9 12 4-KByte Page
L Physical Addr
PTE >
Page-Directory- PDE with PS=0 40
Pointer Table 40 Page Table
Page-Directory
"> PDPTE 40
9
40
Page Map L pML4E
Level 4
40
CR3

Five-level Page Table

= 57-bit virtual address space

= Supported by Linux
since 4.14

* Enabled by default

For Intel Xeon Scalable
"Ice Lake" server
processors and beyond

since 5.5

Linear Address

56 47 39 38 30 29 21 20 12 11 0
PML5 PML4 Directory Ptr Directory Table Offset
Vv
9
9
/9 9 flz 4-KByte Page
Physical Addr
—>» PDE Iy
> PDPTE 40
40 Page Directory
Page-Directory 40
> 40 Pointer Table
PML4E
‘9
<
PTE —
> PMLSE Page Table
40

CR3

TLB

= Translation Buffer

* A hardware cache of popular virtual-to-physical address translations

* Essential component which makes virtual memory possible

= TLB exploits locality

* Temporal locality: an instruction or data item that has been recently accessed will
likely be re-accessed soon
— Instructions and data accesses in loops, ...

. locality: if a program accesses memory at address x, it will likely soon
access memory near X
— Code execution, array traversal, stack accesses, ...

4190.568 Advanced Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

16

TLB Organization

= TLB is implemented in hardware

* Processes only use a handful of pages at a time

— 16~256 entries in TLB is typical

* Usually fully associative
— All entries looked up in parallel

— But may be set associative to reduce latency

* Replacement policy: LRU (Least Recently Used)
* TLB actually caches the whole PTEs, not just PFNs

Valid Tag (VPN) Value (PTE)
1 0x1000 M| Prot PFN 0x1234
1 0x2400 M| Prot PFN 0x8800

0 =

4190.568 Advanced Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

17

Handling TLB Misses

= Software-managed TLB

?

* Hardware-managed TLB

* CPU knows where page tables are in memory
— e.g.,CR3 (or PDBR) register in IA-32 / Intel 64, satp in RISC-V

. maintains page tables
* CPU “walks” the page table and fills TLB

* Page tables have to be in hardware-defined format

4190.568 Advance d Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

18

TLB on Context Switch

= Flush TLB on each context switch

* TLB is flushed automatically when PTBR is changed in a hardware-managed TLB
* Some architectures support the pinning of pages into TLB

— For pages that are globally-shared among processes (e.g., kernel pages)
— MIPS, Intel, etc.

* Track which entries are for which process
* Tag each TLB entry with an ASID (Address Space ID)
A privileged register holds the ASID of the current process
MIPS / ARMv7-A support 8-bit ASID
ARMvV8-A supports 8-bit/| 6-bit ASID
Intel 64 supports 12-bit PCID (Process Context ID) — Since Westmere (2010)

4190.568 Advance d Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

19

TLB on Multi-core

= TLB coherence
* Page-table changes may leave stale entries in the TLBs
* Flushing the local TLB is not enough

* Unlike memory caches, TLBs of different cores are not maintained coherent by
hardware

* TLB coherence should be restored by the OS

= TLB

* The initiating core sends an IPI (Inter-Processor Interrupt) to the remote cores
* The remote cores invalidate their TLBs (may need to flush the entire TLB)

* The IPl may take several hundreds of cycles

4190.568 Advanced Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

20

TLB Performance

* TLB is the source of many performance problems

* Performance metric: hit rate, lookup latency, ...

" |ncrease TLB (= #TLB entries * Page size)
* Use superpages: e.g., 2MB, | GB page support in x86 64
* Increase the TLB size

= Use multi-level TLBs

* e.g, Intel Haswell (4KB pages): LI ITLB 128 entries (4-way),
LI DTLB 64-entries (4-way), L2 STLB 1024 entries (8-way)

* Change your algorithms and data structures to be TLB-friendly

21

Paging: Pros

* No external fragmentation

" Fast to allocate and free
* A list or bitmap for free page frames
* Allocation: no need to find contiguous free space

* Free: no need to coalesce with adjacent free space

= Easy to “page out” portions of memory to disk
* Page size is chosen to be a multiple of disk block sizes
* Use valid bit to detect reference to “paged-out” pages

* Can run process when some pages are on disk

= Easy to protect and share pages

22

Paging: Cons

* |nternal fragmentation

* Wasted memory grows with larger pages

* Memory reference overhead
* Page table stored in memory
* Address translation increases latency

* Solution: get hardware support (TLBs)

* Storage needed for page tables
* Needs one PTE for each page in virtual address space
* 32-bit virtual address space with 4KB pages: 4MB per page table
* Page table for each process
* Solution: use multi-level page table

4190.568 Advanced Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 23

Memory Mapping

Virtual Memory Area

" Virtual address space is a resource

* Every memory area should be allocated in the
virtual address space

* If you run out of the virtual address space, you can
not access any more memory
(even if you have space in the physical memory)

" Some of memory areas are backed by files
and some aren’t

unused

code

data

heap

stack

«— brk

stack
pointer

25

Memory Mapping

= A dynamically allocated virtual memory area that has a backing store

* File
* Shared memory

* None
(Anonymous mapping)

unused

code

data

heap

stack

26

File vs. Anonymous Mapping

* File mapping (memory-mapped file)
* Backing store: regular file
* Maps a memory region to a file region

* The content of the file can be read from or written to using load/store instructions

= Anonymous mapping
* Virtual address space not backed by a file
* Maps a memory region to a memory area filled with 0

* Zero-page mapping

4190.568 Advance d Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

27

Shared vs. Private Mapping

= Several processes can map the same backing store in their own virtual
address space

= Shared mapping File Anonymous

* Modifications to shared pages are mapping mapping
visible to all involved processes

Private Private
= Private mapping file mapping anonymous mapping

Private

 Modifications are not visible to

other processes Shared Shared

Shared . . .
 Copy-on-write file mapping anonymous mapping

mmap()

void *mmap(void *addr, size_t length, int prot, int flags,
int fd, off_t offset);

" Creates a new mapping in the virtual address space of the calling process

* addr: the starting address for the new mapping (should be aligned to page boundary)

— If NULL, the kernel chooses the address
— Otherwise, the kernel takes it as a hint about where to place the mapping

* length: the length of the mapping

* prot: protection info. (PROT_EXEC, PROT_READ, PROT_WRITE, PROT_NONE)
* flags: mapping flags (MAP_PRIVATE, MAP_SHARED, MAP_ANONYMOUS, ...)

* fd,offset: file descriptor & file offset (used for file mapping)

29

Memory-Mapped File: Example

= Allows processes to perform file I/O using memory references
* Instead of open(), read(),write(), close(), etc.

* Map a file to a virtual memory region

#include <sys/mman.h>
#include <stdio.h>
#include <unistd.h>

int main(int argc, char *argv[]) {
int fd = open(“/bin/1s”, O RDONLY);
char *p = (char *) mmap(@, 4096, PROT_READ, MAP_SHARED, fd, 0);
printf(“Ox%02x 0x%02x 0x%02x 0x%02x\n”, *p, *(p+l), *(p+2), *(p+3));
close(fd);

30

Memory-Mapped File

* |mplementation
* Initially, all pages in mapped region are marked as invalid
* OS reads a page from file whenever invalid page is accessed
* PTEs map virtual addresses to page frames holding file data
* <Virtual address base + n> refers to offset + nin file

" Writes to the memory-mapped area

* If MAP_SHARED,
OS writes to a page and it is written to the file when evicted from physical memory

* If MAP_PRIVATE,
OS creates a private copy and then write data to the page (a.k.a. Copy-On-Write).

File is not modified.

4190.568 Advanced Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

31

File /O Comparisons

char buf[1024]; char buf[1024]; Nt fd (“a.txt”)
in = open(“a.txt”, ...);
int fd = open(“a.txt”, ...); FILE *fp = fopen(“a.txt”,“r”); har * ; (@ fd, 0)
char = mma 3 ey ’ 5
read(fd, buf, 1024); fgets(buf, 1024, fp); P g
buf me— buf m—
memcpy i_ __________ j
memepy - C library - mmap
memcpy i i
]

I
D D

4190.568 Advanced Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

32

Summary: Memory-Mapped File

" Pros

* Uniform access for files and memory (just use pointers)

* Several processes can map the same file allowing the pages in memory to be shared

= Cons
* Process has less control over data movement

* Does not generalize to streamed |/O (pipes, sockets, etc.)

4190.568 Advanced Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

33

Shared Memory: Example

" Allows (unrelated) processes to share data using direct memory
reference

#include <sys/mman.h>
#include <stdio.h>
#include <fcntl.h>
#include <unistd.h>

int main(int argc, char *argv[]) {
int fd = shm open(“/shm1”, O CREAT | O EXCL | O_RDWR, 0600);
ftruncate(fd, 4096); // set shmem size
int *p = (int *) mmap(®, 4096, PROT READ | PROT WRITE, MAP_SHARED, fd, 0);
for (int i = 0; i < 1024; i++) p[i] = i;
close(fd);

Shared Memory

* |mplementation
* Have PTEs in both tables map to the same physical frame
* Each PTE can have different protection values
* Must update both PTEs when page becomes invalid

= Mapping shared memory in the virtual address space

* At the different address: flexible (no address space conflicts), but pointers inside
the shared memory are invalid

* At the same address: less flexible, but shared pointers are valid

4190.568 Advanced Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

35

Copy-on-Write

* Defers memory copies as long as possible, hoping to avoid them
altogether

* |mplementation

* Instead of copying pages, create shared mappings to the same page frames in
physical memory

* Shared pages are protected as read-only

* When data is written to these pages, OS allocates new space in physical memory
and directs the write to it

= Usage
* fork()
* Allocating data and heap pages, etc.

36

Copy-on-Write during fork()

= COW ensures that both processes do
not see each other’s changes

* Instead of copying all pages, create shared
mappings of parent pages in the child address
space

* Shared pages are protected as read-only
* Reads happen as usual

* Writes generate a protection fault and OS
copies the page, changes page mapping, and
restarts write instruction

» Efficient when the child process calls
exec () immediately after fork()

write

Process

Page
table

Physical
memory

E—N

fork()

' copied

[| =

child process

37

Summary

/bin/Is

code

code
data

File system

Physical memory

| | code File-backed, Read only (Shared)
/ code File-backed (unmapped)
code g

data

heap

stack

heap

code

data

heap

stack -

data File-backed, Private, Read only
heap Anonymous, R/W
Process 2
code File-backed, Read only (Shared)
|-~ code File-backed, Read only
stack
== . data File-backed, COW’d, R/W
Process 1:..---
____________ . heap Anonymous, R/W
— heap Anonymous, R/W (unmapped)
-------------------------- stack Anonymous, R/W

38

Swapping

Swapping

= Support processes when not enough physical memory
* User program should be independent of the amount of physical memory
* Single process with very large address space
* Multiple processes with combined address spaces

* Consider physical memory as a for disks

* Leverage locality of reference within processes

* Process only uses small amount of address space at a moment
* Only small amount of address space must be resident in physical memory

e Store the rest of them to disk

40

Memory Hierarchy

* Each layer acts as “backing store” for layer above

)e/gisg

size Cache

Main memory

Disk storage

speed

cost

41

Numbers Everyone Show Know

L1 cache reference 0.5ns
Branch mispredict 5ns
L2 cache reference 7/ ns
Mutex lock/unlock 100 ns
Main memory reference 100 ns
Compress 1K bytes with Zippy 10,000 ns
Send 2K bytes over 1 Gbps network 20,000 ns
Read 1 MB sequentially from memory 250, 000 ns
Round trip within same datacenter 500,000 ns
Disk seek 10,000,000 ns
Read 1 MB sequentially from network 10,000,000 ns
Read 1 MB sequentially from disk 30,000,000 ns
Send packet CA = Netherlands - CA 150,000,000 ns

42

How to Swap

* Programmers manually move pieces of code or data in and out of memory as they
were needed

* No special support needed from OS

" Process-level swapping
* A process is swapped temporarily out of memory to a backing store

* It’s brought back into memory later for continued execution

= Page-level swapping
* Swap pages out of memory to a backing store (swap-out or page-out)
* Swap pages into memory from the backing store (swap-in or page-in)

4190.568 Advanced Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 43

Where to Swap

= Swap space

* Disk space reserved for moving pages back and forth

The size of the swap space determines the maximum number of memory pages
that can be in use

Block size is same as the page size

Can be a dedicated partition or a file in the file system

PFNO PFN1 PFN2 PFN3

Physical | pDbo | PD1 | PID1 | PID2
Memory | (VPNO) | (VPN1) | (VPN 2) | (VPNO)
BlkO Blkl1 Blk2 Blk3 Blk4 Blk5 Blkée Blk7
Swap | ribo | PIDO ‘ PD1 | PD1 | PD3 | PID2 | PID3
Space | (VPN1) | (VPN 2) €€ | (vpNoO) | (VPN 1) | (VPN O) | (VPN 1) | (VPN 1)

44

When to Swap

" Proactively based on thresholds
* OS wants to keep a small portion of memory free
* Two threshold values: HW (high watermark) and LW (low watermark)

* A background thread called swap daemon (or page daemon) is responsible for
freeing memory (e.g., kswapd in Linux)

* If (# free pages < LW), the swap daemon starts to evict pages from physical
memory

* If (# free pages > HW), the swap daemon goes to sleep

* What if the allocation speed is faster than reclamation speed!?

4190.568 Advanced Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

45

What to Swap

* What happens to each type of page frame on low mem!

 Kernel code — Not swapped
* Kernel data — ?

* Page tables for user processes — Not swapped
* Kernel stack for user processes — ?

* User code pages — Dropped

* User data pages — ??

* User heap/stack pages — Swapped

* Files mmap’ed to user processes — ??
* Page cache pages — Dropped or go to file system

" Page replacement policy chooses the pages to evict

46

Page Replacement

" Which page in physical memory should be selected as a victim?
* Write out the victim page to disk if modified (dirty bit set)

* If the victim page is clean, just discard

— The original version is either in the file system or in the swap space

* Why not use direct-mapped or set-associative design similar to CPU caches?

* Goal: minimize the page fault rate (miss rate)
* The miss penalty (cost of disk access) is so high (> x100,000)

* A tiny miss rate quickly dominates the overall AMAT (Average Memory Access
Time)

4190.568 Advanced Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

47

OPT (or MIN)

= Belady’s optimal replacement policy (1966)

Replace the page that will not be used for the longest time in the future

Shows the lowest fault rate for any page reference stream

Problem: have to predict the future

Not practical, but good for comparison

Reference: 1 2 3 4 1 2 5 1 2 3 4 5
1 1 1 1 1 1 1 1 1 3 3 3

PF rate
=7/12 2 2 2 2 2 2 2 2 2 4 4
5 5 5

3 4 4 4 5 5 5

Miss Miss Miss Miss Hit Hit Miss Hit Hit Miss Miss Hit

FIFO

" First-In First-Out

Replace the page that has been in memory the longest
Why might this be good!?
— Maybe, the one brought in the longest ago is not being used

Why might this be bad!?

— Maybe, it’s not the case

— Some pages may always be needed

Obvious and simple to implement

Fair: all pages receive equal residency

FIFO suffers from “Belady’s anomaly”
— The fault rate might increase when the algorithm is given more memory

4190.568 Advance d Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

49

FIFO: Belady’s Anomaly

Reference: 1 2 3 4 1 2 5 1 2 3 4 5
1 1 1 4 4 4 5 5 5 5 5 5

PF rate
=9/12 2 2 2 1 1 1 1 1 3 3 3
3 3 3 2 2 2 2 2 4 4

Miss Miss Miss Miss Miss Miss Miss Hit Hit Miss Miss Hit

Reference: 1 2 3 4 1 2 5 1 2 3 4 5
1 1 1 1 1 1 5 5 5 5 4 4

PF rate
=10/12 2 2 2 2 2 2 1 1 1 1 5
3 3 3 3 3 3 2 2 2 2
4 4 4 4 4 4 3 3 3

Miss Miss Miss Miss Hit Hit Miss Miss Miss Miss Miss Miss

4190.568 Advanced Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

LRU

* | east Recently Used

* Replace the page that has not been used for the longest time in the past

* Use past to predict the future
— cf. OPT wants to look at the future

With locality, LRU approximates OPT
“Stack” algorithm: does not suffer from Belady’s anomaly

Harder to implement: must track which pages have been accessed
* Does not consider the frequency of page accesses

Does not handle all workloads well

4190.568 Advanced Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

51

Stack Property

= Stack algorithms

* Policies that guarantee increasing memory size does not increase the number of
page faults (e.g., OPT, LRU, etc.)

* Any page in memory with m frames is also in memory with m+/[frames

Reference: 1 2 3 4 1 2 5 1 2 3 4 5
Stack distance: oo oo oo oo 4 4 oo 3 3 5 5 5
1 2 3 4 1 2 5 1 2 3 4 5

PF rate
=10/12 1 2 3 4 1 2 5 1 2 3 4
1 2 3 4 1 2 5 1 2 3
1 2 3 4 4 4 5 1 2

3 3 3 4 5 1
Miss Miss Miss Miss Miss Miss Miss Hit Hit Miss Miss Miss

4190.568 Advanced Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

RANDOM

* Another simple policy

* Simply picks a random page to replace under memory pressure

* Simple to implement: no bookkeeping needed

* Performance depends on the luck of the draw

* Outperforms FIFO and LRU for certain workloads

Reference: 1 2 3 4 1 2 5 1 2 3 4 5
1 1 1 1 1 1 1 1 1 1 1 5

P ’;’/";‘Z 2| |2||2||2||2||2||2]||2]||3]||3]|3
3 1 1 1 5 5 5 5 4 4
Miss Miss Miss Miss Hit Hit Miss Hit Hit Miss Miss Miss

4190.568 Advanced Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

53

Hit Rate

100% A

80% A

60%

Comparisons

400/0 T

20% A

The 80-20 Workload

OPT

LRU
X FIFO
— RANIL

20 40 60 80 1

Cache Size (Blocks)

100% 1

80%

60%

it Rate

L 40°/o 7

200/0 7

The Looping Workload
(50 blocks)

20

40 60
Cache Size (Blocks)

Hit Rate

100% 1

80% -

60%

400/0 7

20%

0%

The Random Workload

OPT

LRU
X FIFO
— RAND

20 40 60 80
Cache Size (Blocks)

54

Implementing LRU

= Software approach
* OS maintains ordered list of page frames by reference time
* When page is referenced: move page to the front of the list
* When need victim: pick the page in the back of the list

* Slow on memory reference, fast on replacement

* Hardware approach

?

4190.568 Advanced Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

55

Replacement Algorithms

= |/O buffer cache replacement
* "Page hit" is known to OS

e Uses block I/O traces

* LRU, LRU-2,2Q, SEQ, LRFU, EELRU, MQ, LIRS,ARC, ...

" VM page replacement

* "Page hit" is only known to hardware, not to OS
* Hardware sets the Reference / Dirty bits in the PTE

LRU approximation

Uses memory reference traces

4190.568 Advance d Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

CLOCK,WSClock, GCLOCK, CAR, CLOCK-Pro, ...

56

Thrashing

" What happens when physical memory is not enough to hold all the

“working sets” of processes
* Working set: a set of pages that a process is using actively
* Most of the time is spent by an OS paging data back and forth from disk

* Possible solutions: "
— Kill processes

— Buy more memory i X
' thrashing

* Android’s LMK
(Low Memory Killer)

CPU utilization

degree of multiprogramming

Summary

* VM mechanisms
* Physical and virtual addressing
* Partitioning, segmentation, paging
* Page table management, TLBs, etc.
* VM policies
* Page replacement policy, page allocation policy

" VM optimizations

Demand paging, copy-on-write (space)

Multi-level page tables (space)

Efficient translation using TLBs (time)

Page replacement policy (time)

4190.568 Advanced Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

58

