Jin-Soo Kim
(jinsoo.kim@snu.ac.kr)

Systems Software &
Architecture Lab.

Seoul National University

Fall 2020

Lottery Scheduling

(Carl Waldspurger et al., OSDI '94)

Priority-based Scheduling Schemes

* The notion of priority does not provide the encapsulation and
modularity properties

* The assignment of priorities and dynamic priority adjustment schemes
are ad-hoc

* Adjusting scheduling parameters is at best a black art
* Poorly understood
" Schedulers are complex and difficult to control
" Priority inversion problem

* Fair share schedulers are implemented by adjusting priorities with a
feedback loop (relatively coarse control over long-running applications)

Goals

= Flexible and responsive control over the relative execution rates of
computations

* Rapid, dynamic control over scheduling at a time scale of milliseconds to seconds

" Proportional sharing

* The resource consumption rates of active computations are proportional to the
relative shares that they are allocated

" Support for modular resource management

* Can be generalized to manage other resources, such as I/O bandwidth, memory,
and access to locks

= Simple and efficient implementation

Lottery Scheduling and Tickets

= A randomized resource allocation mechanism based on tickets and

lotteries

= Tickets

Encapsulate abstract, relative, and uniform resource rights
Abstract: they quantify resource rights independently of machine details

Relative: the fraction of a resource that they represent varies dynamically in
proportion to the contention for that resource

Uniform: rights for heterogeneous resources can be homogeneously represented as
tickets

Similar to the properties of money

4190.568 Advanced Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

Lotteries

= Scheduler picks the winning ticket randomly, and gives the owner the
resource

* Probabilistically fair

* The expected allocation of resources is proportional to the number of tickets that
they hold

* The scheduling algorithm is randomized

* The actual allocated proportional are not guaranteed to match the expected
proportions exactly

* The disparity between them decreases as the number of allocations increases

Performance Characteristics

* The number of lotteries won by a client:

* Binomial distribution

* The winning probability p (total T tickets): P =1t/T

* The expected number of wins w after n lotteries:
E[w] = np oy, =np(1-p) o,/Elwl=(1-p)/np

* A client's throughput is proportional to its ticket allocation

* The number of lotteries required for a client's first win:

* Geometric distribution
* The expected number of lotteries n that a client must wait before its first win:

E[n]=1/p or = (1 —p)/p*

* The client's average response time is inversely proportional to its ticket allocation

Performance Characteristics (cont'd)

= The accuracy improves with \/n
* Need frequent lotteries

* With a scheduling quantum of 10 msec (100 lotteries/sec), reasonable fairness can
be achieved over sub-second time intervals

* Mostly accurate, but short-term inaccuracies are possible

= No starvation

* Any client with a non-zero number of tickets will eventually win a lottery

= Responsive

* Any changes to relative ticket allocations are immediately reflected in the next
lottery

4190.568 Advanced Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

Example: Fairness

* Two Dhrystone (CPU-intensive) benchmark tasks for 60 sec.

15 =
* The variance is greater for larger '
ratios:

£
S 1 °
- °
* 1342:1 (for 10:1) g 10- .
= o 8
g o 8¢
. - ®
" Even larger ratios converge over % : o °
. . =] o
longer time intervals: 2 3
. S o
* 19.08: 1| (for 20 : I, for 3 min.) : %
1 &
V77— | |
0 2 4 6 3

Allocated Ratio

10

Example: Multimedia Applications

* Three mpeg_play video viewers

* Not exact
* 1.92:150:1 (3:2:1)
e [.92:1:1.533:1:2)

" Due to the round-robin processing
of client requests by the single-
threaded XI IR5 server

* 3.06:2.04: 1 with -no-display option

Cumulative Frames

600 —
400 —
200

0

3:2:1

Time (sec)

Compensation Tickets

* What happens if a thread is /O-bound and blocks before its quantum
expires!?

* The thread gets less than its share of the processor

" |f a thread consumes only a fraction f of the quantum, its tickets are
inflated by |/f until the next time you win

* If A on average uses |/5 of a quantum, its tickets will be inflated 5x and it will win 5
times as often and get its correct share overall

10

Ticket Transfer

* |f you are blocked on someone else, give them your tickets

= Useful for client-server system

 Server has no tickets of its own

Clients give their tickets to server threads during RPC

Server's priority is the sum of the priorities of all of its active clients

Server can use lottery scheduling to give preferential service to high-priority clients

Clients also have the ability to divide ticket transfers across multiple servers on
which they may be waiting

" Avoid priority inversion problem

11

Ticket Transfer: Example

" Three clients (8 : 3 : | allocations) compete for service from a

multithreaded database server
(server has no tickets)

= Search a substring over the entire
Shakespeare's plays (No I/O)

* Throughput
* 20 vs. |10 queries (A:B + C)
* 39 vs. |13 queries (B :C)
= Response time
e 7.69:251:1 (A:B:C)
« 291 :1 (B:C)

40 —
30 3

20 =

Queries Processed

I
200

I
400
Time (sec)

|
600

I
800

12

Ticket Inflation

= Make up your own tickets (print your own money)

" Only works among mutually trusting clients
* Why!?
* Presumably works best if inflation is temporary

= Allows clients to adjust their resource allocations without explicit
communication

= Examples

* Monte-Carlo algorithm: dynamically adjust the number of tickets as a function of its
current relative error

* Graphics-intensive programs: a large share to display a crude outline initially, and
then a smaller share to compute details

13

Ticket Inflation: Example

® Three Monte-Carlo tasks

* Ticket inflation proportional to
the square of its relative error

" A new task initially receives a large
share of the processor

Cumulative Trials (millions)

P—i
-]
|

)
|

) I |
500

Time (sec)

L) I L)
1000

14

Ticket Currencies

" Express resource rights in units that are local to each group of mutually

trusting clients
= A unique currency is used to denominate tickets within each trust

boundary
* Each currency is backed, or funded, by tickets that are denominated in more

primitive currencies
* The effects of inflation can be locally contained by maintaining an exchange rate

= Useful for flexible naming, sharing, and protecting resource rights
* Simplify mini lottery like mutex inside a group

* Support fine-grain allocation decisions

15

.t
.t

s
.

.
.n
.
.
-
.t
-t

ticket

amount

CUTTENCy

s
s
a®
""""
as
.
o=

ar

e

currency

Ticket Currencies: Ticket vs. Currency

list of
backing
fickets

unique

e dctive

amount

e LIST Of

issued
tickets

Ticket Currencies: Implementation

Each current maintains an active amount
of sum for all of its issued tickets

A ticket is active while it is being used by
a thread to compete in a lottery

If a ticket deactivation(activation) changes
a currency's active amount to(from) zero,
the deactivation(activation) propagates to
each of its backing tickets

Currency relationships may form an
acyclic graph

base

3000

1000

/

alice

200

N

200
alice

\

2000

™

bob

«__ 100

task2

//

500
N

200
task2

300
task2

/

\

100
bob

task3

100

\
A

100
task3

A

/

thread2

thread3

thread4

17

Ticket Currencies: Load Insulation

6000000 —

= 5 Dhrystone tasks

= Two currencies A and B 4000000 =

* Funded equally

2000000

Cumulative Iterations

= Task group A

. Al with 100.A .
. A2 with 200.A 6000000 -

* Task group B
+ Bl with 100.B
+ B2 with 200.B
+ Later, added B3 with 300.B N

4000000 —

2000000

Cumulative Iterations

Time (sec)

18

Ticket Currencies: Lock Funding

" A lottery-scheduled mutex has
* Mutex currency

* |nheritance ticket

* Waiting threads fund the mutex currency

* The mutex transfers its inheritance ticket to the
thread which currently holds the mutex

" When done, mutex holder conducts a
lottery to determine the next holder

 Passes on inheritance ticket

waiting threads

blocked on lock T
| 3 !
1
t7 t8
NI, ‘; / 1
\ t3 /
1 1
7 8
lock lock currency
1
Y
. inheritance
lock ticket

2 lock owner

19

Implementation Issues

* Frequent lotteries require efficiency

= A fast random number generator
* Based on Park-Miller algorithm
* Executed in about 10 RISC instructions

= Fast selection of ticket based on random number

* Straightforward algorithm: O(n)
— Clients may be ordered by decreasing
ticket counts
* Tree-based algorithm: O(log n)

— Uses a tree of partial ticket sums, with
clients at the leaves

total = 20
random [0 .. 19] =15

10 2 S 1

>=10 X2=12 X=17
2> 157 2>157 X>15?7

no no yes

20

Discussion

* Not as fair as we expected
* Mutex comes out 1.8 : | instead of 2 : |
* Multimedia applications come out .92 : 1.50 : | instead of 3:2: |

* To really work, tickets must be used everywhere

* The results for multimedia applications are distorted due to X server assuming
uniform priority instead of using tickets

* In every queue, spinlock, etc.
" |s there any way to game the scheduler?
" What about kernel cycles!?

* Other problems?

21

Stride Scheduling

(Carl Waldspurger et al., '95)

Stride Scheduling

" A deterministic version to reduce short-term variability
* Based on rate-based flow control algorithms

= Stride

* The time interval that a client must wait between successive allocations
* Inversely proportional to the number of ticket

* High priority jobs have low strides and thus run often

* Represented in virtual time units called passes

= Result

* Far more accurate than lottery scheduling
* Error can be bounded absolutely instead of probabilistically

4190.568 Advanced Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

23

Basic Algorithm

= Tickets

 Relative resource allocation

= Strides = stride, / tickets
* |Interval between selection

* stride,: some large integer constant

= Pass
* Virtual time index for the next selection
* Advanced by the client’s stride

For each client c,
c->pass = c->stride

|

Select client ¢
with minimum pass value

|

Use resource for quantum

|

Compute next pass:
c->pass += c->stride

24

Stride Scheduling: Example

e
/f/7/j/

Time (quanta)

Tickets
Strides

Time=1
Time=2
Time=3
Time=4
Time=5
Time =6

Time=7

Lottery vs. Stride

= Resource Allocations

e A:B:C

Cumulative Quanta

=3:2:1

40

30

10

Time (quanta)

Cumulative Quanta

Time (quanta)

26

Other Issues (See paper)

* Dynamic join and leave
= Dynamic ticket modification
* Compensation tickets!?

* Hierarchical stride scheduling

Summary: Lottery vs. Stride

= Probabilistic vs. deterministic

= Stride scheduling

* Improved accuracy over relative throughput rates, with significant less response
time variability

* Careful state updates are required for dynamic changes

" Lottery scheduling

* Conceptually simpler than stride scheduling
 Stateless

4190.568 Advanced Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

28

