
Lottery Scheduling

Jin-Soo Kim
(jinsoo.kim@snu.ac.kr)

Systems Software &
Architecture Lab.

Seoul National University

Fall 2020

(Carl Waldspurger et al., OSDI '94)

4190.568 Advanced Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 2

▪ The notion of priority does not provide the encapsulation and

modularity properties

▪ The assignment of priorities and dynamic priority adjustment schemes

are ad-hoc

• Adjusting scheduling parameters is at best a black art

▪ Poorly understood

▪ Schedulers are complex and difficult to control

▪ Priority inversion problem

▪ Fair share schedulers are implemented by adjusting priorities with a

feedback loop (relatively coarse control over long-running applications)

4190.568 Advanced Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 3

▪ Flexible and responsive control over the relative execution rates of

computations

• Rapid, dynamic control over scheduling at a time scale of milliseconds to seconds

▪ Proportional sharing

• The resource consumption rates of active computations are proportional to the

relative shares that they are allocated

▪ Support for modular resource management

• Can be generalized to manage other resources, such as I/O bandwidth, memory,

and access to locks

▪ Simple and efficient implementation

4190.568 Advanced Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 4

▪ A randomized resource allocation mechanism based on tickets and

lotteries

▪ Tickets

• Encapsulate abstract, relative, and uniform resource rights

• Abstract: they quantify resource rights independently of machine details

• Relative: the fraction of a resource that they represent varies dynamically in

proportion to the contention for that resource

• Uniform: rights for heterogeneous resources can be homogeneously represented as

tickets

• Similar to the properties of money

4190.568 Advanced Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 5

▪ Scheduler picks the winning ticket randomly, and gives the owner the

resource

▪ Probabilistically fair

• The expected allocation of resources is proportional to the number of tickets that

they hold

▪ The scheduling algorithm is randomized

• The actual allocated proportional are not guaranteed to match the expected

proportions exactly

• The disparity between them decreases as the number of allocations increases

4190.568 Advanced Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 6

▪ The number of lotteries won by a client:

• Binomial distribution

• The winning probability p (total T tickets):

• The expected number of wins w after n lotteries:

• A client's throughput is proportional to its ticket allocation

▪ The number of lotteries required for a client's first win:

• Geometric distribution

• The expected number of lotteries n that a client must wait before its first win:

• The client's average response time is inversely proportional to its ticket allocation

𝒑 = Τ𝒕 𝑻

𝑬 𝒘 = 𝒏𝒑 𝝈𝒘
𝟐 = 𝒏𝒑(𝟏 − 𝒑) Τ𝝈𝒘 𝑬 𝒘 = Τ(𝟏 − 𝒑) 𝒏𝒑

𝑬 𝒏 = Τ𝟏 𝒑 𝝈𝒏
𝟐 = Τ(𝟏 − 𝒑) 𝒑𝟐

4190.568 Advanced Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 7

▪ The accuracy improves with 𝑛
• Need frequent lotteries

• With a scheduling quantum of 10 msec (100 lotteries/sec), reasonable fairness can

be achieved over sub-second time intervals

• Mostly accurate, but short-term inaccuracies are possible

▪ No starvation

• Any client with a non-zero number of tickets will eventually win a lottery

▪ Responsive

• Any changes to relative ticket allocations are immediately reflected in the next

lottery

4190.568 Advanced Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 8

▪ Two Dhrystone (CPU-intensive) benchmark tasks for 60 sec.

▪ The variance is greater for larger

ratios:

• 13.42 : 1 (for 10 : 1)

▪ Even larger ratios converge over

longer time intervals:

• 19.08 : 1 (for 20 : 1, for 3 min.)

4190.568 Advanced Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 9

▪ Three mpeg_play video viewers

▪ Not exact

• 1.92 : 1.50 : 1 (3 : 2 : 1)

• 1.92 : 1 : 1.53 (3 : 1 : 2)

▪ Due to the round-robin processing

of client requests by the single-

threaded X11R5 server

• 3.06 : 2.04 : 1 with -no-display option

3:2:1

3:1:2

4190.568 Advanced Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 10

▪ What happens if a thread is I/O-bound and blocks before its quantum

expires?

• The thread gets less than its share of the processor

▪ If a thread consumes only a fraction f of the quantum, its tickets are

inflated by 1/f until the next time you win

• If A on average uses 1/5 of a quantum, its tickets will be inflated 5x and it will win 5

times as often and get its correct share overall

4190.568 Advanced Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 11

▪ If you are blocked on someone else, give them your tickets

▪ Useful for client-server system

• Server has no tickets of its own

• Clients give their tickets to server threads during RPC

• Server's priority is the sum of the priorities of all of its active clients

• Server can use lottery scheduling to give preferential service to high-priority clients

• Clients also have the ability to divide ticket transfers across multiple servers on

which they may be waiting

▪ Avoid priority inversion problem

4190.568 Advanced Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 12

▪ Three clients (8 : 3 : 1 allocations) compete for service from a

multithreaded database server

(server has no tickets)

▪ Search a substring over the entire

Shakespeare's plays (No I/O)

▪ Throughput

• 20 vs. 10 queries (A : B + C)

• 39 vs. 13 queries (B : C)

▪ Response time

• 7.69 : 2.51 : 1 (A : B : C)

• 2.91 : 1 (B : C)

A

B

C

4190.568 Advanced Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 13

▪ Make up your own tickets (print your own money)

▪ Only works among mutually trusting clients

• Why?

▪ Presumably works best if inflation is temporary

▪ Allows clients to adjust their resource allocations without explicit

communication

▪ Examples

• Monte-Carlo algorithm: dynamically adjust the number of tickets as a function of its

current relative error

• Graphics-intensive programs: a large share to display a crude outline initially, and

then a smaller share to compute details

4190.568 Advanced Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 14

▪ Three Monte-Carlo tasks

▪ Ticket inflation proportional to

the square of its relative error

▪ A new task initially receives a large

share of the processor

4190.568 Advanced Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 15

▪ Express resource rights in units that are local to each group of mutually

trusting clients

▪ A unique currency is used to denominate tickets within each trust

boundary

• Each currency is backed, or funded, by tickets that are denominated in more

primitive currencies

• The effects of inflation can be locally contained by maintaining an exchange rate

▪ Useful for flexible naming, sharing, and protecting resource rights

• Simplify mini lottery like mutex inside a group

• Support fine-grain allocation decisions

4190.568 Advanced Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 16

4190.568 Advanced Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 17

▪ Each current maintains an active amount

of sum for all of its issued tickets

▪ A ticket is active while it is being used by

a thread to compete in a lottery

▪ If a ticket deactivation(activation) changes

a currency's active amount to(from) zero,

the deactivation(activation) propagates to

each of its backing tickets

▪ Currency relationships may form an

acyclic graph

4190.568 Advanced Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 18

▪ 5 Dhrystone tasks

▪ Two currencies A and B

• Funded equally

▪ Task group A

• A1 with 100.A

• A2 with 200.A

▪ Task group B

• B1 with 100.B

• B2 with 200.B

• Later, added B3 with 300.B

4190.568 Advanced Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 19

▪ A lottery-scheduled mutex has

• Mutex currency

• Inheritance ticket

▪ Waiting threads fund the mutex currency

• The mutex transfers its inheritance ticket to the

thread which currently holds the mutex

▪ When done, mutex holder conducts a

lottery to determine the next holder

• Passes on inheritance ticket

inheritance
ticket

4190.568 Advanced Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 20

▪ Frequent lotteries require efficiency

▪ A fast random number generator

• Based on Park-Miller algorithm

• Executed in about 10 RISC instructions

▪ Fast selection of ticket based on random number

• Straightforward algorithm: O(n)

– Clients may be ordered by decreasing

ticket counts

• Tree-based algorithm: O(log n)

– Uses a tree of partial ticket sums, with

clients at the leaves

4190.568 Advanced Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 21

▪ Not as fair as we expected
• Mutex comes out 1.8 : 1 instead of 2 : 1

• Multimedia applications come out 1.92 : 1.50 : 1 instead of 3 : 2 : 1

▪ To really work, tickets must be used everywhere
• The results for multimedia applications are distorted due to X server assuming

uniform priority instead of using tickets

• In every queue, spinlock, etc.

▪ Is there any way to game the scheduler?

▪ What about kernel cycles?

▪ Other problems?

Stride Scheduling

(Carl Waldspurger et al., '95)

4190.568 Advanced Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 23

▪ A deterministic version to reduce short-term variability
• Based on rate-based flow control algorithms

▪ Stride
• The time interval that a client must wait between successive allocations

• Inversely proportional to the number of ticket

• High priority jobs have low strides and thus run often

• Represented in virtual time units called passes

▪ Result
• Far more accurate than lottery scheduling

• Error can be bounded absolutely instead of probabilistically

4190.568 Advanced Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 24

▪ Tickets

• Relative resource allocation

▪ Strides = stride1 / tickets

• Interval between selection

• stride1: some large integer constant

▪ Pass

• Virtual time index for the next selection

• Advanced by the client's stride

Select client c
with minimum pass value

For each client c,
c->pass = c->stride

Use resource for quantum

Compute next pass:
c->pass += c->stride

4190.568 Advanced Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 25

A B C

Tickets 3 2 1

Strides 2 3 6

Time = 1 2 3 6

Time = 4 6 6 6

Time = 6 8 9 6

Time = 2 4 3 6

Time = 3 4 6 6

Time = 5 8 6 6

Time = 7 8 9 12

+2

+2

+2

+3

+3

+6

4190.568 Advanced Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 26

▪ Resource Allocations

• A : B : C = 3 : 2 : 1

4190.568 Advanced Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 27

▪ Dynamic join and leave

▪ Dynamic ticket modification

▪ Compensation tickets?

▪ Hierarchical stride scheduling

4190.568 Advanced Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 28

▪ Probabilistic vs. deterministic

▪ Stride scheduling

• Improved accuracy over relative throughput rates, with significant less response

time variability

• Careful state updates are required for dynamic changes

▪ Lottery scheduling

• Conceptually simpler than stride scheduling

• Stateless

