Jin-Soo Kim
(jinsoo.kim@snu.ac.kr)

Systems Software &
Architecture Lab.

Seoul National University

Fall 2020

CPU Scheduling

Running a Thread

)

Fetch I € Mem|[P(]
Decode /

Execute /

Update PC

N

innnni
(@)
")
C

(B RILEN

Data

Virtualizing the CPU

OS Data

OS creates an illusion
that each thread has its
own CPU (and memory)

scheduler

CPU Scheduling

= A policy deciding which process to run next, given a set of runnable

tasks (processes or threads)

* Happens frequently, hence should be fast

= Mechanism

e How to transition?

= Policy
* Who should be the next?
* When to transition?

Scheduled

—

Ready ¢
Time slice exhausted

/0 or event / 1/0 or
completion event wait

Blocked

Preemptive (or not)

* Non-preemptive scheduler

* The scheduler waits for the running task to voluntarily yield the CPU
— cf) yield()

* Tasks should be cooperative

* Preemptive scheduler
* The scheduler can interrupt a task and force a context switch

* Implemented using periodic timer interrupts

* What if a task is preempted in the midst of updating the shared data?

* What if a process in a system call is preempted!?

4190.568 Advanced Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

Work-Conserving (or not)

" Work-conserving scheduler
* Never leave a resource idle when someone wants it

* e.g., Linux CPU scheduler (ideally)

* Non-work-conserving scheduler
* May leave the resource idle despite the presence of jobs
* e.g., Server waits for short job before starting on a big job

* e.g., Anticipatory I/O scheduler: waits for a short time after a read operation in
anticipation of another close-by read requests to overcome “deceptive idleness”

4190.568 Advanced Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

(Static) Priority Scheduling

Each task has a (static) priority

* cf.) nice(),renice(), setpriority(), getpriority()

Choose the task with the highest priority to run next
Round-robin or FIFO within the same priority

Can be either preemptive or non-preemptive

Starvation problem
* If there is an endless supply of high priority tasks, no low priority task will ever run

Priority Scheduling

" Priority is dynamically adjusted at run time
* Modeled as a Multi-level Feedback Queue (MLFQ)

* A number of distinct queues
for each priority level

* Priority scheduling between queues,
round-robin in the same queue

Queue
headers

Runable processes

..

Priority 4

Priority 3

Priority 2

Priority 1

UNIX Scheduler

* MLFQ

* Preemptive priority scheduling
e Time-shared based on time slice

* Tasks dynamically change priority

* Aging for avoiding starvation
* Increase priority as a function of wait time
* Decrease priority as a function of CPU time

= Favor interactive tasks over CPU-bound tasks
" Priority vs. time slice?

= Many ugly heuristics have been explored in this area

CPU Scheduler

: * Epoch-based priority scheduling
* 0(n) scheduler

Linux 2.6 ~ : ﬁé::l\ézr/eerxupr:rsgeaur;ays with bitmaps
2.6.22 * O(1) scheduler

AN @AWERM ° CFS (Completely Fair Scheduler) by Ingo Molnar
: M © Sporadic task model deadline scheduling
Hnux 3.14 (SCHED_DEADLINE)

DL . FQr real-tlr.ne.tasks with deadline SCHED DEADLINE
* Highest priority

SCHED_FIFO
SCHED RR

SCHED_NORMAL
SCHED_BATCH

e For real-time tasks

Fair * For time-sharing tasks

* For per-CPU idle tasks SCHED_IDLE

Linux 2.4 Scheduler

Priorities

= Static priority
* The base priority represented by the nice value in [-20, 19] (default: 0)
* Determines the task’s timeslice

* Dynamic priority
* The amount of time remaining in this timeslice
* Declines with time as long as the task has the CPU
* When its dynamic priority falls to 0O, the task is marked for rescheduling

* Real-time priority (used for SCHED FIFO and SCHED_ RR)

* Only real-time tasks have the real-time priority
* Higher real-time priority values always beat lower values

13

Fields Related to Scheduling

struct task_struct {

/*
* offset 32 begins here on 32-bit platforms. We keep
* all fields in a single cacheline that are needed for
* the goodness() loop in schedule().
<
counter: time remaining in the task's current guantum long counter;
(represents dynamic priority)
nice: nice value, -20 to +19 (represents static priority) long nice;

policy: SCHED OTHER, SCHED_FIFO, SCHED_RR unsigned long policy;
mm: points to the memory descriptor struct mm_struct *mm;
processor: CPU ID on which the task will execute int processor;
cpus_runnable: CPU currently running on unsigned long cpus_runnable, cpus_allowed;

cpus_allowed: CPUs allowed to run
run_list: the run queue struct list_head run_list;

Timeslice

" Linux v2.4 gets a timer interrupt
or a tick once every 10ms on

e Decreased from 200ms in Linux v2.2

1A-32 (HZ = 100)

Linux wants the time slice to be

around 50ms

= Timeslice
* nice = 20 (lowest):

nice

nice

O (default):
-19 (highest):

| tick
6 ticks
|0 ticks

~
*

Scheduling quanta.

NOTE! The unix "nice" value influences how long a process
gets. The nice value ranges from -20 to +19, where a -20
1s a "high-priority" task, and a "+10" is a low-priority
task.

We want the time-slice to be around 5@ms or so, so this
calculation depends on the value of HZ.

CoE R R R R R

=y
#1f HZ < 200
#define TICK_SCALE(x) ((x) >> 2)
#elif HZ < 400
#define TICK_SCALE(x) ((x) >> 1)
#elif HZ < 800
#define TICK_SCALE(x) (x)
#elif HZ < 1600
#define TICK_SCALE(x) ((x) << 1)
#else
#define TICK_SCALE(X) ((x) << 2)
#endif

#define NICE_TO_TICKS(nice) (TICK_SCALE(Z20-(nice))+1)

Epochs

* The Linux scheduling algorithm works by dividing the CPU time into

epochs

* In a single epoch, every process has a specified time quantum whose duration is
computed when the epoch begins

* The epoch ends when all runnable tasks have exhausted their quantum

* The scheduler recomputes the time quantum durations of all processes and a new
epoch begins

" The base time quantum of a process is computed based on the nice
value

16

Selecting the Next Task to Run

repeat_schedule:
/*

* Default process to select..

*/

next = 1dle_task(this_cpu);

c = -1000;

list_for_each(tmp, &runqueue_head) {
p = list_entry(tmp, struct task_struct, run_list);
1f (can_schedule(p, this_cpu)) {

1nt weight =
1f (weight >

goodness

p, this_cpu, prev->active_mm);

c)

= weight, next = p;

Calculating Goodness

static inline int goodness(struct task_struct * p, int this_cpu,

struct mm_struct *this_mm) {
int weight = -1;

1f (p->policy == SCHED_OTHER) {
weight = p->counter;
1f (!weight) goto out;
i1f (p->mm == this_mm || !p->mm)
weight += 1; weight = @
weight += 20 - p->nice; p has exhausted its quantum

goto out; @ < weight < 1000

ks p is a conventional task
weight = 1000 + p->rt_priority;

out:
return weight;

weight >= 1000
p is a real-time task

¥

New Epoch

/* Do we need to re-calculate counters? */
1f Cunlikely(!'c)) {
struct task_struct *p;

spin_unlock_1rq(&runqueue_lock);
read_lock(&tasklist_lock);
for_each_task(p)

p->counter = (p->counter >> 1) + NICE_TO_TICKS(p->nice);
read_unLock(&taskl1st_Tock);
spin_lock_1irq(&runqueue_lock);
goto repeat_schedule;

Preemption Condition

/*
* the "goodness value' of replacing a process on a given CPU.

* positive value means 'replace', zero or negative means 'dont'.
*/
static inline int preemption_goodness(struct task_struct * prev,

struct task_struct * p, int cpu)

{

return goodness(p, cpu, prev->active_mm) - goodness(prev, cpu, prev->active_mm);

¥

20

Example:

* |nitially choose T2 among the three tasks in the run queue

Runnable Blocked
T1 T2 T3
(nice 0) (nice -10) (nice 10)

BERREERRERERRRRRE

0 1

4190.568 Advanced Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 21

Example:

= At tick |, decrement the counter and continue

Runnable Blocked
T1 T2 T3
(nice 0) (nice -10) (nice 10)

r1t1t1d

o0 —>|
© —>
—
—
s
—
—
s
s
—
—
s

0 1 2

4190.568 Advanced Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 22

Example:

= Continue until T2 is blocked after tick 3

Runnable Blocked
T1 T3 T2
(nice 0) (nice 10) (nice -10)

4190.568 Advanced Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 23

Example:

= Now choose Tl

Runnable

T1

(nice 0)

T3
(nice 10)

Blocked

T2
(nice -10)

T
o 1 2 3 4 5 6 7

4190.568 Advanced Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

Example:

= T runs until it exhausts all the timeslice

Runnable Blocked
T1 T3 T2
(nice 0) (nice 10) (nice -10)

0 1 2 3 4 5 6 7 8 9 0 11 12 13 14 15 16 17 18 19

4190.568 Advanced Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

25

Example:
= Now schedule T3

Runnable

T1

(nice 0)

0 1 2 3 4 5 6 7

4190.568 Advanced Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

T3
(nice 10)

Blocked

T2
(nice -10)

Example:

= T3 has also exhausted all the time slice

Runnable

T1 T3
(nice 0) (nice 10)

0 1 2 3 4 5 6 7 8 9 10 11

4190.568 Advanced Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

Blocked

T2
(nice -10)

27

Example:

"= Now start a new epoch with recalculating counters

Runnable Blocked
T1 T3 T2
(nice 0) (nice 10) (nice -10)

0 1 2 3 4 5 6 7 8 9 0 11 12 13 14 15 16 17 18 19

4190.568 Advanced Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

28

Example:
" Schedule T

Runnable

T1 T3

(nice 0) (nice 10)

Blocked

T2
(nice -10)

0 1 2 3 4 5 6 7 8 9 10 11 12 13

4190.568 Advanced Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

29

Example:

"= T2 is woken up after tick |5,and it preempts T

Runnable
T1 T2 T3
(nice 0) (nice -10) (nice 10)

Blocked

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

4190.568 Advanced Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

30

Problems

* O(n) operations
* When to choose the next task to run
* When to recalculate counters for each epoch

* Example: During the execution of VolanoMark, 37~55% of the total time spent in
the kernel is spent in the scheduler (for handling 400 ~ 2000 threads)

* [ock contention in the multi-core systems

* A single runqueue is shared by all the cores

" |/O-bound task is seldom boosted under high system load

31

Linux 2.6 Scheduler

* New priority scheme: 140 levels (0 ~ 139)
* Normal tasks: 120 + nice ([-20, 19])
* Real-time tasks: 0 ~ 99

schedule()

sched_find_first_set()

* Dynamic priority control based on
interactivity (e.g., average sleep time) C‘opm"wo D i P

m I lists of all bl
O(l) scheduling ey oy
* Active and expired array
* Each priority array contains a queue of "‘H -
. . -bit priority array . 5 "
runnable tasks per each priority level bR/189 “”’9 .
run the first process in the list list of runnable tasks

for priority 7

* Each array also has a bitmap

= Fach processor has its own run queue

32

Linux CFS
(Completely Fair Scheduler)

Linux Task Priority

139 (nice 19)

= Total 140 levels (0 ~ 139) Non-real-time ' jow
task priority
* A smaller value means higher priority (SCHED_NORMAL,

SCHED_BATCH) L] ggo (nice -20)

= Setting priority for non-real-time tasks
* nice(),setpriority()

e .20 < nice value = 19

i o Real-time

* Default nice value = 0 (priority value 120) task priority
(SCHED_FIFO,

= Setting priority for real-time tasks SCHED_RR)

 sched _setattr()
e Static priority for SCHED_ FIFO & SCHED RR

* Runtime, deadline, period for SCHED DEADLINE Real-time task |
with deadline | figh

34

Proportional Share Scheduling

= Basic concept
* A weight value is associated with each task
* The CPU is allocated to task in proportion to its weight

. o =
i Task B (weight 1)
Task C (weight 4)

. Task D (weight 1)

weight 2 i
9t 2 _ ¢ o Time
Y. weight; 8

Task A’s share =

4190.568 Advanced Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

Nice to Weight

* How to map nice values to weights?
* Wants a task to get ~10% less CPU time when it goes from nice 1 to nice 1+1

* This will make another task remained on nice 1 have ~10% more CPU time
* weight(1)/weight(1+1) = 0.55/0.45 = 1.22 (or = 25% increase)

= Examples
o . . const int sched_prio_to_weight[40] = {
T, (nice 0), T (nice 1) /* =20 */ 88761, 71755, 56483,
— T,:1024/(1024+820) = 55.5% /* -15 */ 29154, 23254, 18705,
— T,:820/(1024+820) = 44.5% /w98, roco, 6109,
/% -5 */ 3121, 2501, 1991,
o +T3 (nice |) /X0 */ 1024, 820, 655,

— T,:1024/(1024+820%2) = 38.4% AN e e =

/* 10 */ 110, 87, 70,
— T,:820/(1024+820*2) = 30.8% /* 15 */ 36, 29, 23,

— T,:820/(1024+820%2) = 30.8% &

36

Virtual Runtime

= Approximate the “ideal multitasking” that CFS is modeling

= Normalize the actual runtime to the case with nice value 0

VR(T) = Weighto PR(T) = [Weight, x 2> x PR(T) | > 32

~ Weight(T) = \Wetghto Xy ey < PRI

* Weight,: the weight of nice value 0 \precomputed:

* Weight(T): the weight of the task T sched_prio_to_wmult]]

PR(T): the actual runtime of the task T
VR(T): the virtual runtime (vruntime) of the task T

" For a high-priority task, its vruntime increases slowly

37

Runqueue

" CFS maintains a red-black tree where
all runnable tasks are sorted by vruntime
* Self-balancing binary search tree

* The path from the root to the farthest leaf is
no more than twice as long as the path to the

nearest leaf 24

* Tree operations in O(log N) time

* The leftmost node indicates the smallest vruntime rb_leftmost

* Choose the task with the smallest virtual runtime (vruntime)

 Small virtual runtime means that the task has received less CPU time than what it
should have received

38

Timeslice

* The time a task runs before it is preempted

It gives each runnable task a slice of the CPU’s time

The length of timeslice of a task is proportional to its weight

TS(T):

Weight(T)
TS(T) = P
S 21, in R Weight(T;) :

ldeal runtime for the task T

P: Scheduling period

-

sysctl_sched_latency, if n < sched_nr_latency

sysctl_sched_min_granularity * n, otherwise

sysctl_sched_latency:

Targeted preemption latency for
CPU-bound tasks

(6ms*(1+log #cores) by default)

sysctl_sched_min_granularity:
Minimal preemption granularity
for CPU-bound tasks
(0.75ms*(1+log #cores) by default)

sched_nr_latency =
sysctl_sched_latency /
sysctl_sched_min_granularity
(8 by default)

39

Scheduling Flow

* Timer interrupt handler calls the CFS scheduler

* Updates the vruntime of the current task
* |f preemption is needed, mark the NEED_RESCHED flag

* When the current task has run beyond its timeslice

* |f the current task’s vruntime exceeds the vruntime of the leftmost task in RB tree

» On exit, schedule() is called when NEED RESCHED flag is set
* Clear the NEED RESCHED flag and enqueue the previous task

* Pick the next task to run

e Context switch to the next task

" The current task can be also preempted when a higher-priority task is
inserted into the runqueue

40

Example:

= |nitially choose the

* But how long?

leftmost task, T2, in this case

Runnable

Blocked

TS(T2)
3121
— X P
1024 + 3121 + 335
= 4,18 ms T2
nice: -5
w: 3121
T 7T 1 1T 1 T 7T 1 1T 1
o 1 2 3 4 5 6 7 & 9 10 11 12 13 14 15 1

4190.568 Advanced Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kirr

1@snu.ac.kr)

Example:

= Update T2's vruntime

Runnable T3 Blocked
VR(T2) nice: 5
1024 118
T 3121 "
— 137 T1 T2
nice: 0 nice: -5
w:1024 w: 3121
T 7T 1 1T 1 7T 11
5 6 7 8 9 11 12 13 14 15 18 19 (ms)

0 1 2 3 4

4190.568 Advanced Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

Example:

= Now choose Tl

TS(T1)

~ 1024 y
1024 + 3121 + 335

= 1.37 ms

0 1 2 3 4

4190.568 Advanced Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu

P

5

.ac.kr)

Runnable T3 Blocked
nice: 5
T1 T2
nice: 0 nice: -5
w:1024 w: 3121
1T 1T 1T 1T 11
6 7 8 9 11 12 13 14 15 1 18 19(ms)

43

Example:

= Update Tl's runtime

Runnable T1 Blocked
VR(T1) nice: 0
_1024><137
© 10247
_ 137 T3 T2
nice: 5 nice: -5
w: 335 w: 3121
R T 7T 1 1T 1
o 1 2 3 4 5 6 7 8 9 11 12 13 14 15 1 19 (ms)

4190.568 Advanced Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

Example:

= ChooseT3

TS(T3)

~ 335 y
1024 + 3121 + 335

= 0.45 ms

P

0 1 2 3 4 5

4190.568 Advanced Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu

.ac.kr)

Runnable T1 Blocked
nice: 0

T3 T2

nice: 5 nice: -5

w: 335 w: 3121

11 1T 1T 11

7 8 9 11 12 13 14 15 1 18 19(ms)

45

Example:

= Update T3's vruntime

VR(T3)

1024
335

= 1.38

X 0.45

0 1 2 3 4 5

4190.568 Advanced Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

Runnable

T1
nice: 0
w:1024

Blocked

Example:

= Choose Tl

Runnable Blocked

TS(T1)
~ 1024 y
1024 + 3121 + 335

= 1.37 ms Tl
nice: 0
w:1024

P

0 1 2 3 4 5 6 7

4190.568 Advance d Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 47

Example:

= Update Tl's vruntime

Runnable T3 Blocked
VR(T1) nice: 5
—137+1024x137
- 1024~

nice: -5 nice: 0

w: 3121 w:1024

T 1 I
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19(ms)

4190.568 Advanced Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 48

Example:

* Update T2 for 4.18ms and T3 for 0.45ms

Runnable

/

T2
nice: -5
w: 3121

0 1 2 3 4 5 6 7 8 9 10 11

4190.568 Advanced Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

T1

nice: 0

T3

Blocked

12

111111

!

19 (ms)

49

Example:

* Now T2 is scheduled, but it is blocked after running Ims

Runnable T3 Blocked
VR(T2) hice: 5 T2
1024 w: 335 nice: -5
= 2.74 + 3121 X 1.00 / w: 3121
= 3.07 Tl
nice: 0
w:1024

()
0 1 2 3 4 5 6 7 8 9 0 11 12 13 14 15 16 17 18 19 (ms)

4190.568 Advance d Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

50

Example:

= Now Tl runs

TS(T1)
Runnable T1 Blocked
__ 1024 X P nice: 0 T2
~ 1024 + 335 10
w:1024 nice: -5

= 4.52 ms w: 3121
VR(T1) T3

1024 -
=274 + X 4.52 nice: 5

1024 w: 335
= 7.26

T 1

0 1 2 3 4 5 6 7 8 9 0 11 12 13 14 15 16 17 18 19 (ms)

4190.568 Advance d Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

51

Example:

= T3 runs
TS(T3)
235 Runnable T3 Blocked
= X P nice: 5 T2
1024 + 335 w: 335 e

= 148 ms w: 3121
VR(T3) T1

1024 .
=2.76 + x 1.48 nice: 0

335 w:1024
=7.28

0 1 2 3 4 5 6 7 8 9 0 11 12 13 14 15 16 17 18 19 (ms)

4190.568 Advance d Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

52

Tickless (or DynTick) Kernel

= Full tickless operation introduced in Linux 3.10

* No need for a periodic tick in the system, particularly when the system is idle
* |Idle CPUs save power

» CONFIG_HZ PERIODIC

* Old-style mode where the timer tick runs at all times

» CONFIG_NO HZ_ IDLE (formerly CONFIG_NO_HZ) — default

* Disable the tick at idle, with re-programming it for the next pending timer

» CONFIG_NO HZ FULL

* The CPUs without a timer tick must be designated at boot time
* At least one CPU needs to receive interrupts and do the necessary housekeeping
* The timer tick is disabled if there is only a single runnable process on that CPU

53

