
Introduction to

Operating Systems

Jin-Soo Kim
(jinsoo.kim@snu.ac.kr)

Systems Software &
Architecture Lab.

Seoul National University

Fall 2020

4190.568 Advanced Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 2

Hardware

System Call Interface

shell
shell

ls
ps

Hardware Control (Interrupt handling, etc.)

File System
Management

I/O Management
(device drivers)

Memory
Management

Process
Management P

ro
te

ctio
n

Kernel
mode

User
mode trap

scheduler

IPC

synchronization

4190.568 Advanced Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 3

▪ OS provides an execution environment for running programs

▪ OS provides a(an) ________ view of the underlying computer system
• What are the correct abstractions?

• How much of hardware should be exposed?

▪ Typical OS abstractions
• Processors → Processes, Threads

• Memory →Address space (virtual memory)

• Storage →Volumes, Directories, Files

• I/O Devices → Files (+ ioctls)

• Networks → Files (sockets, pipes, …)

4190.568 Advanced Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 4

▪ OS manages various resources of a computer system

▪ Sharing

▪ _________

▪ Fairness

▪ Efficiency

▪ …

▪ CPU

▪ Memory

▪ I/O devices

▪ Queues

▪ Energy

▪ …

Resources

4190.568 Advanced Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 5

▪ OS is highly-concurrent, _______________ software

▪ Two kinds of events

• System calls

• Interrupts

Hardware

trap

Interrupts

System call

4190.568 Advanced Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 6

▪ Process control

• fork(), exec(), wait(), exit()

• Pipes for inter-process communication (IPC)

▪ Hierarchical file systems

• Special files: uniform I/O, naming, and protection

• Removable file systems via mount/umount

• i-node

▪ Signals

▪ Shells

• Standard I/O and I/O redirection, filters

• Shell scripts

4190.568 Advanced Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 7

▪ CPU modes of operation: kernel vs. user

• 4 levels in x86: Ring 0 > 1 > 2 > 3

• 3 levels in RISC-V: Machine > Supervisor > User

▪ Protected or ____________ instructions

• Direct I/O access (e.g., in/out instructions in x86)

• Accessing system registers

• Memory state management

• …

4190.568 Advanced Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 8

▪ Interrupts

• Generated by hardware devices

• External interrupts vs. IPIs

• Asynchronous

▪ Exceptions

• Generated by software executing instructions

– Faults (unintentional, but possibly recoverable): page faults, protection faults, …

– Traps (intentional): syscall instruction in x86_64 or ecall instruction in RISC-V

– Aborts (unintentional and unrecoverable): parity error, machine error, …

• Synchronous

• Exception handling is logically same as interrupt handling

4190.568 Advanced Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 9

▪ Memory protection

• Segmentation

• Paging

▪ Timer

▪ DMA (Direct Memory Access)

▪ Atomic instructions

• Atomic inc/dec

• Test-and-Set

• Compare-and-Swap

• LL (Load Locked) & SC (Store Conditional)

• …

System Calls

4190.568 Advanced Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 11

▪ OS defines a set of system calls

• Programming interface to the services provided by OS

• OS protects the system by rejecting illegal requests

• OS may impose a quota on a certain resource

• OS may consider fairness while sharing a resource

▪ A system call is a ________ procedure call

• System call routines are in the OS code

• Executed in the kernel mode

• On entry, user mode → kernel mode switch

• On exit, CPU mode is changed back to the user mode

4190.568 Advanced Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 12

▪ POSIX vs. Win32

Category POSIX Win32 Description

Process
Management

fork CreateProcess Create a new process

waitpid WaitForSingleObject Wait for a process to exit

execve (none) CreateProcess = fork + exec

exit ExitProcess Terminate execution

kill (none) Send a signal

File
Management

open CreateFile Create a file or open an existing file

close CloseHandle Close a file

read ReadFile Read data from a file

write WriteFile Write data to a file

lseek SetFilePointer Move the file pointer

stat GetFileAttibutesEx Get various file attributes

chmod (none) Change the file access permission

File System
Management

mkdir CreateDirectory Create a new directory

rmdir RemoveDirectory Remove an empty directory

link (none) Make a link to a file

unlink DeleteFile Destroy an existing file

chdir SetCurrentDirectory Change the current working directory

mount (none) Mount a file system

4190.568 Advanced Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 13

▪ There must be a special “trap” instruction that:

• Causes an exception, which invokes a kernel handler

• Passes a parameter indicating which system call to invoke

• Saves caller’s state (registers, mode bits)

• Returns to user mode when done with restoring its state

• OS must verify caller’s parameters (e.g., pointers)

Examples:

syscall instruction (x86_64)

ecall instruction (RISC-V)

4190.568 Advanced Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 14

count = read (fd, buffer, nbytes);

4190.568 Advanced Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 15

Kernel

Arch-dependent kernel code

System Call Interface

Hardware Platform

C Library (libc)

User Application

User space

Kernel space

4190.568 Advanced Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 16

▪ int 0x80 (+ iret)

• "Software interrupt"

• A legacy way to invoke a system call (used for 32-bit mode)

• Slow: use the same mechanism as traps and interrupts

▪ sysenter (+ sysexit)

• A new, fast instruction to invoke a system call in 32-bit mode

• Introduced by Intel (not available in 64-bit mode on AMD CPUs)

▪ syscall (+ sysret)

• Similar to sysenter, but used in 64-bit mode

• Introduced by AMD (not available in 32-bit mode on Intel CPUs)

4190.568 Advanced Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 17

• RCX RIP

• RIP MSR_LSTAR

• R11 RFLAGS

• …

• Initialize CS and SS from MSR_STAR

• Set CPL(Current Privilege Level) to 0

4190.568 Advanced Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 18

▪ Example: getpid()

4190.568 Advanced Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 19

▪ System call number for getpid(): 0x27 (= 39)

In C library

4190.568 Advanced Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 20

▪ @ arch/x86/entry/syscalls/syscall_64.tbl

4190.568 Advanced Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 21

▪ @ arch/x86/kernel/cpu/common.c

4190.568 Advanced Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 22

▪ @ arch/x86/entry/entry_64.S

4190.568 Advanced Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 23

▪ @ arch/x86/entry/common.c

4190.568 Advanced Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 24

▪ @ arch/x86/entry/syscall_64.c

4190.568 Advanced Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 25

▪ @ arch/x86/include/generated/asm/syscalls_64.h

4190.568 Advanced Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 26

▪ Virtual Dynamic Shared Object (@ arch/x86/entry/vdso/)

• A small shared library exported by the kernel that is mapped into the address

space of all user-space applications

• Mapped to a different location every time (for security)

• Used to accelerate the execution of certain read-only system calls ("virtual system

calls") without entering the kernel
– clock_gettime()

– gettimeofday()

– getcpu()

– time()

– clock_getres()

• @ arch/x86/entry/vdso

• $ man vdso

4190.568 Advanced Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 27

4190.568 Advanced Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 28

▪ vvar

• Mapped just before the vdso page

• Contains data accessed by virtual system calls

• Kernel periodically updates the values (if necessary)

• User-space application can only read the values

▪ vsyscall

• A legacy ABI for virtual system calls

• Mapped to the fixed user-space address

• Not recommended to use

4190.568 Advanced Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 29

▪ A generic library function that performs the specified system call

• Symbolic constants for system call numbers are specified in <sys/syscall.h>

• Useful when you add a new system call that has no wrapper function in the C

library

4190.568 Advanced Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 30

▪ Thomas E. Anderson, Brian N. Bershad, Edward D. Lazowska,

and Henry M. Levy,

"Scheduler Activations: Effective Kernel Support for the User-Level

Management of Parallelism,"

TOCS, 1992.

▪ Due: Before the class on Sep. 16

▪ There will be an online quiz for this paper during the class on Sep. 16

