
F2FS

Jin-Soo Kim
(jinsoo.kim@snu.ac.kr)

Systems Software &
Architecture Lab.

Seoul National University

Fall 2020

(M. Rosenblum and J. K. Ousterhout., SOSP, 1991)

4190.568 Advanced Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 2

▪ Based on the Log-structured File System (LFS)

▪ Flash-friendly on-disk layout

▪ Cost-effective index structure

▪ Multi-head logging

▪ Adaptive logging

▪ Fsync acceleration with roll-forward recovery

▪ Publicly available, included in Linux mainline kernel since Linux 3.8

▪ Being used in commercial Android smartphones

4190.568 Advanced Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 3

▪ Flash awareness

• All the metadata are located together for locality

• Start address of main area is aligned to the zone size

• Cleaning is done in a unit of section (FTL’s GC unit)

▪ Cleaning cost reduction

• Multi-head logging for hot/cold data separation

Check
point
Area
(CP)

Segment
Info.
Table
(SIT)

Node
Address

Table
(NAT)

Superblock 0

Superblock 1

Segment Number
(1 segment = 2MB)

Segment
Summary

Area
(SSA)

Main Area

HCH W W C

0 1 2 …

Section

Zone Zone

Section Section Section Section Section Section

ZoneZone

Section

Random writes Sequential writes

metadata data

4190.568 Advanced Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 4

▪ Inline data up to 3,692 bytes

▪ Inline extended attributes up to 200 bytes

4190.568 Advanced Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 5

C
P

S
B

Inode
Map

Dir Inode
Directory

data

File data

Indirect
Pointer block

Segment
Summary

Segment
Usage

File Inode
File data…

Used for cleaning

Fixed location One big log

Direct
Pointer block

Wandering tree problem
when a file data is updated, the upper index

structures such as inode, inode map, and checkpoint
block are also updated recursively

Cleaning overhead
In order to serve new empty log space, it needs to
reclaim these obsolete blocks seamlessly to users

4190.568 Advanced Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 6

C
P

S
B

NAT

Dir Inode
Directory

data

File data

Indirect
Node

Segment
Summary

(SSA)

Segment Info.
Table (SIT)

File Inode

File data…

Used for cleaning

Fixed location w/ locality Multiple logs

Direct
Node

-Direct node blocks for dir
-Direct node blocks for file
-Indirect node blocks

-Dir data
-File data
-Cleaning data

4190.568 Advanced Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 7

▪ Data temperature classification

• Node > Data

• Direct node > Indirect node

• Directory > User file

▪ Separation of multi-head logs in NAND flash

• Zone-aware log

allocation for

set-associative

mapping FTL

• Multi-stream interface

4190.568 Advanced Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 8

▪ To reduce cleaning cost at highly aged conditions, F2FS changes write

policy dynamically

▪ Append logging (logging to clean segments)
– Need cleaning operations if there is no free segment

– Cleaning causes mostly random read and sequential writes

▪ Threaded logging (logging to dirty segments)
– Reuse invalid blocks in dirty segments

– No cleaning needed

– Cause random writes

4190.568 Advanced Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 9

▪ Checkpoint and rollback

• Maintains shadow copy of checkpoint, NAT, SIT blocks

• Recovers the latest checkpoint

• Keeps NAT/SIT journal in checkpoint to avoid NAT, SIT writes

file1dir1

NAT
S
B

SIT SSACP

Fixed location Multi-head logging

Shadow copy

file2

NAT/SIT
journaling

#0, #1

4190.568 Advanced Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 10

▪ Fsync handling

• On fsync, checkpoint is not necessary

• Direct node blocks are written with fsync mark

▪ Roll-forward recovery procedure

• Search marked direct node blocks

• Per marked node block, identify old and new data blocks by checking the difference

between the current and previous node block

• Update SIT; invalidate old data blocks

• Replay new data block writes; update NAT, SIT accordingly

• Create checkpoint

4190.568 Advanced Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 11

▪ In F2FS, more than 90% of writes are sequential

▪ F2FS reduces write amount per fsync by using roll-forward recovery

▪ Btrfs and Nilfs2 performed poor than Ext4

• Btrfs: heavy indexing overheads

• Nilfs2: periodic data flush

4190.568 Advanced Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 12

▪ Performance gain of F2FS over Ext4 is more on SATA SSD than PCIe

SSD

▪ Discard size matters in SATA SSD due to interface overhead

4190.568 Advanced Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 13

4190.568 Advanced Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 14

4190.568 Advanced Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 15

AOSP build support - F2FS

vold
(Idle time management) SQLite (v3.21)

Batch
Atomic
Writes

F2fs-tools
(linux/mac support)

File-based encryption
(security for userdata)

Block layer for fscrypto

Soc
(ICE support)

UFS vertical optimization
(HPB / Explicit GC control / Stream ID / Copy-offloading / cache barrier …)

F2FS upstream
(current: v4.15-rc1)

V3.18 : ~320 patches
V4.4 : ~506 patches
V4.9 : ~506 patches

F2fs-tools upstream
(v1.10.0)

Disk quotas
(system quota)

File-based verity
(security for apks)

UFS command logging

fastboot /
fs_mgr

F2FS GC
F2FS Trim
Compression
Storage-tiering

MotoX/G

Huawei P/Honor/Mate

Nexus 9

2014

Open Source Community

Customize UFS driver / Latency tracking

4190.568 Advanced Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 16

