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▪ Based on the Log-structured File System (LFS)

▪ Flash-friendly on-disk layout

▪ Cost-effective index structure

▪ Multi-head logging

▪ Adaptive logging

▪ Fsync acceleration with roll-forward recovery

▪ Publicly available, included in Linux mainline kernel since Linux 3.8

▪ Being used in commercial Android smartphones
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▪ Flash awareness

• All the metadata are located together for locality

• Start address of main area is aligned to the zone size

• Cleaning is done in a unit of section (FTL’s GC unit)

▪ Cleaning cost reduction

• Multi-head logging for hot/cold data separation
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▪ Inline data up to 3,692 bytes

▪ Inline extended attributes up to 200 bytes
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▪ Data temperature classification

• Node > Data

• Direct node > Indirect node

• Directory > User file

▪ Separation of multi-head logs in NAND flash

• Zone-aware log 

allocation for 

set-associative 

mapping FTL

• Multi-stream interface
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▪ To reduce cleaning cost at highly aged conditions, F2FS changes write 

policy dynamically

▪ Append logging (logging to clean segments)
– Need cleaning operations if there is no free segment

– Cleaning causes mostly random read and sequential writes

▪ Threaded logging (logging to dirty segments)
– Reuse invalid blocks in dirty segments

– No cleaning needed

– Cause random writes
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▪ Checkpoint and rollback

• Maintains shadow copy of checkpoint, NAT, SIT blocks

• Recovers the latest checkpoint

• Keeps NAT/SIT journal in checkpoint to avoid NAT, SIT writes
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▪ Fsync handling

• On fsync, checkpoint is not necessary

• Direct node blocks are written with fsync mark

▪ Roll-forward recovery procedure

• Search marked direct node blocks

• Per marked node block, identify old and new data blocks by checking the difference 

between the current and previous node block 

• Update SIT; invalidate old data blocks

• Replay new data block writes; update NAT, SIT accordingly

• Create checkpoint
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▪ In F2FS, more than 90% of writes are sequential

▪ F2FS reduces write amount per fsync by using roll-forward recovery

▪ Btrfs and Nilfs2 performed poor than Ext4

• Btrfs: heavy indexing overheads

• Nilfs2: periodic data flush
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▪ Performance gain of F2FS over Ext4 is more on SATA SSD than PCIe

SSD

▪ Discard size matters in SATA SSD due to interface overhead
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AOSP build support - F2FS

vold
(Idle time management) SQLite (v3.21)
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(linux/mac support)

File-based encryption
(security for userdata)

Block layer for fscrypto

Soc
(ICE support)

UFS vertical optimization
(HPB / Explicit GC control / Stream ID / Copy-offloading / cache barrier …)

F2FS upstream
(current: v4.15-rc1)

V3.18 : ~320 patches
V4.4   : ~506 patches
V4.9   : ~506 patches

F2fs-tools upstream
(v1.10.0)
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UFS command logging

fastboot /
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2014

Open Source Community

Customize UFS driver / Latency tracking
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