Jin-Soo Kim
(jinsoo.kim@snu.ac.kr)

Systems Software &
Architecture Lab.

Seoul National University

Fall 2020

Solid-State Drives (SSDs)

Anatomy of an SSD

= Samsung 850 Evo

DRAM

SSD Controller
NAND Flash

http://www.anandtech.com/show/9451/the-2tb-samsung-850-pro-evo-ssd-review
4190.568 Advanced Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 2

(Messy) Storage Interfaces

SW Interface
HW/SW)
Interface

Hot Plug Support
Transport Enable, LER, DPC, Enh DPC

| | Express Bay _
ks | WCI@ Standaras

Electricals
/ Phys

Mecharicas (S _Sheeed Up |
e o ——

J. Pappas, Annual Update on Interfaces, FMS, 2015.

4190.568 Advanced Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 3

Moving Closer to the Processor

SATA HDD 150 pis - 20-300ns
10 ms /7 S —

g Intel Optane SSD
S Samsung Z-SSD
O

Vg

o PCle SSD

(o .

- SATA/SAS SSD 100 ps =TT Optane Memory
ke, -

[

o

V

Q

@)

Milliseconds Microseconds Nanoseconds

Serial ATA (SATA)

* Primary internal storage interconnect for desktop and mobile PCs
* Evolved from (Parallel) ATA
* More than |.l billion SATA drives shipped during 2001-2008
* Market share (as of 2008): Desktop (99%), Mobile PC (97.7%), Enterprise (27.6%)

= Serial, point-to-point, half duplex

= Why SATA!
* Lower pin count (cost, space), Lower voltage support (5V = 0.7V)
 Higher performance: SATA 3 — 600MB/s @ 6Gbps

* Simple drive configuration (no slave)
* Greater reliability (CRC/packet)
* Migration to servers (hot plug, NCQ, ...)

4190.568 Advance d Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

SATA NCQ

* Enqueue up to 32 commands in the drive

* Process them in an out-of-order fashion

Native Command Queuing Legacy Command Non-Queued
Requested Read: A, B, C, D Requested Read: A, B, C, D
NCQ Reordered Read: B, D, A, C Non-reordered Read: A, B, C, D

B D A C A B C D
Complete Complete
(1.25 revolutions) (2.75 revolutions)

4190.568 Advanced Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

NVMe (NVM Express)

* The industry standard interface for high-performance NVM storage
* NVMe [.0in 2011 by NVM Express Workgroup
* NVMe [.2in 2014

= PCle-based

" Lower latency

 Direct connection to CPU 4.GBJs

* No HBA (Host Bus Adapter) required:
reduced power and cost

8 GB/s

2 GB/s

» Scalable bandwidth 12.GB/s
* |GB/s per lane (PCle Gen3) S

L UP to 32 Ianes SATA 6Gbps SAS 12Gbps PCle3.0x2 PCle3.0x4 PCle3.0x8

4190.568 Advance d Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

NVMe Overview

* Deep queue: 64K commands per queue, up to 64K queues
= Streamlined command set: only |3 required commands

" One register write to issue a command (“‘doorbell”)

= Support for MSI-X and interrupt aggregation

Controller
Core 0 Core 1 Core n
Management
Admin Admin [[e] Wo o Wo o 1o [{e]
Submission Completion Submission Completion Submission Submission Completion Submission Completion

Doorbell NVMe Controller

4190.568 Advanced Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

NVMe SSD Form Factors

—pe
i e

M.2 (PCle: Up to x4)

4190.568 Advanced Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

SATA

2242 2260 2280

u.2
(SFF-8639:
Up to x4)

SATA Signal Pins Power and Control Pins

ey
(Precludes non-SATA drive insertion)

Signal Pins (SAS Port B)

SAS

Signal Pins Power and Control Pins
(SATA and SAS Port A)

Lanes 1-3,

RefClk O & Signal Pins ,
SMBus, & Dual Port Enable

Lane O (SAS Port B)

u.2

Signal Pins
(SATA and SAS Port A) Refclk 1,
3.3 Aux,
& Resets

Power and Control Pins

Flash Flash Memory Bus 0
Embedded Controller | | |
SATA CPU(S) SRAM
SAS Flash Flash Memory Bus 1
PCle Host _ Controller | | |
<: Interface
Controller Flash Flash Memory Bus 2
- Controller | | |
DRAM
Controller
Flash Flash Memory Bus 3
SSD Controller Controller L
NAND array

DRAM

= Several assumptions are no longer valid

Sequential accesses much faster than random
No write amplification

Little background activity

Media does not wear down

Distant LBNs lead to longer access time

©ovocH
®®®®®E

The Multi-streamed
Solid-State Drive

(J.-U. Kang et al., HotStorage, 2014)

Some of slides are borrowed from the authors’ presentation.

Effects of Write Patterns

* Previous write patterns (= current state) matter

Block O Block 1 Block 2

Block 0 Block 1 Block 2

e Yy
I LBA 7 ﬁ;%,% LBA 0 ﬁﬁyf LBA 2 LBA 0
Z ﬁ};g;f/ LBA 1 99, LBA 3 LBA 1
||| BAs LBA 2 LA LBA 6 LBA 4
LBA 4 LBA 5 LBA 3 é;;ﬁ% LBA 5 LBA 7

Sequential LBA updates into Block 2

Need valid page copying
from Block 0 & Block 1

Random LBA updates into Block 2

Just erase Block O

13

Stream

Data
Lifetime?

Write to stream 1

| Lifetime 1
|
|
|
|
|
! Write to stream 2
| 25tk > Stream 2
] Lifetime 2
|
|
|
|
|
: Write to
------------->
Lifetime

SSD

Block Block Block
Page Page Page
Page Page Page
Page Page Page
Page Page Page
Block Block Block
Page Page Page
Page Page Page
Page Page Page
Page Page Page
Block Block Block
Page Page Page
Page Page Page
Page Page Page
Page Page Page

14

The Multi-streamed SSD

* Mapping data with different lifetime to different streams

StreamlID

‘ Datal3 |

Data5 DatalO

Application

NAND Flash Memory
Block Block Block

Provide information about
data lifetime

Datal Data2 Datal0
I:l Data3 Data7 Datal2
I:l Page Data9 Datal3
I:l Page Page Page

StreamID=1 StreamID=2 StreamID =3

Place data with similar lifetime
into the same erase unit

4190.568 Advanced Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

Working Example

» High GC efficiency = Performance improvement

Request data Request data
1 20 1 22 1 21 100 20 1 1 20 1 22 1 21 100 20 1
BfOCk 0 Block 1 Block 2 BfOCk 0 BfOCk 1 B’OCkZ
22
2 Reduce valid pages to co
NN e Py
21 20

Without Stream Multi-Stream

For effective multi-streaming,

proper mapping of data to streams is essential!

Architecture

Host

Application

| File System |

v !
Generic Block Layer J

Multi-streaming Interface §

SSD

4190.568 Advanced Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

Application

fadvise (fd, Stream ID)

VFS inode field = Stream ID
Store Stream ID
20k In buffer head
Device SSD

17

Case Study: Cassandra

Memory

4190.568 Advanced Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

Flushing

18

Cassandra’s Write Patterns

" Write operations when Cassandra runs

System data
Write

4

Memtable

metadata, journal

System

Commit-log
Write

4190.568 Advanced Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

Flushing data

Commit Log

SSTable 5

af e | e

. u

SSTable 6 SSTable 7

Jud

Compaction-data write

SSTable 1 SSTable 2 SSTable 3 SSTable 4
K1 K1 K2 K1
K2 K3 K3 K3

19

Mapping #1: Conventional

" |ust one stream ID (= conventional SSD)

Memtable

n Commit-log

Write

n System data

Write

4

metadata, journal

n Flushing data

Commit Log

. u

SSTable 7 D D D

System

4190.568 Advanced Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

Compaction datawrite u

SSTable 5 SSTable 6
|| e
SSTable 1 SSTable 2 SSTable 3

SSTable 4

K1

K1

K2

K1

K2

K3

K3

K3

20

Mapping #2: Multi-App

" Separate application writes (ID |) from system traffic

(ID 0)

Memtable

Memory

Commit-log

Write

n System data

Write

metadata, journal

System

4190.568 Advanced Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

n Flushing data '

Commit Log

*

SSTable 5 SSTable 6
a e | e

SSTable 7

Compaction data write

SSTable 1 SSTable 2 SSTable 3 SSTabIe 4
K1 K1 K2 K1
K2 K3 K3 K3

21

Mapping #3: Multi-Log

" Use three streams; further separate Commit Log

Memtable Memory

a Flushing data

Commit-log

Write

Commit Log

n System data

Write

\ 4

metadata, journal

SSTable 1 SSTable 2 SSTable 3 SSTable 4

K1 K1
K2 K3

K2
K3

4190.568 Advanced Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

22

Mapping #4: Multi-Data

= Give distinct streams to different tiers of SSTables

Memtable

Commit-log

Write

n System data

Write

4

metadata, journal

System

4190.568 Advanced Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

E Flus

hing data

Commit Log

= =

Compactiondatawrite

SSTable 5 SSTable 6 SSTable 7
a || e
€ompaction data write
SSTable 1 SSTable 2 SSTable 3

SSTable 4

K1

K1

K2

K1

K2

K3

K3

K3

23

Results: Conventional

= Cassandra’s normalized update throughput
* Conventional “TRIM off”

T

—t

o
(o]

o
o)}

Conventional
(TRIM off)

Update Throughput (ops/sec)

o
'S

0.2 I 1

123 456 7 8 9 10111213141516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
Time (Minutes)

4190.568 Advanced Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

24

Results: Conventional with TRIM

* Cassandra’s normalized update throughput
* Conventional “TRIM on”

1.2

o o
[} [s2] -

Update Throughput (ops/sec)

o
~

02

But still far from ideal

snventional
(TRIM on)
TRIM gives

non-trivial improvement

Conventional
(TRIM off)

123456 7 8 910111213141516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
Time (Minutes)

25

Results: Multi-App

* Cassandra’s normalized update throughput

* “Multi-App” (System data vs. Cassand

1.2

ra data)

—_—

W?\

o
®

W

Convention
(TRIM on)

A

Update Throughput (ops/sec)

04
Conventional
(TRIM off)
0.2 T 1

12 3 45 6 7 8 910111213141516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

4190.568 Advanced Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

Time (Minutes)

26

Results: Multi-Log

* Cassandra’s normalized update throughput
* “Multi-Log” (System data vs. Commit-Log vs. Flushed data)

1.2

a

o
[

Conventional
(TRIM on)

o
o

Update Throughput (ops/sec)

o
~

Conventional
(TRIM off)

0.2 I I I T T T T T T T T T T T T T T T T T T T I I I I I I I I I I I I I I T T T 1

1 2 3 45 6 7 8 9101112131415 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

Time (Minutes)
4190.568 Advanced Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

Results: Multi-Data

* Cassandra’s normalized update throughput

¢ ° 9
e “Multi-Data (System data vs. Commit-Log vs. Flushed data vs. Compaction Data)

1.2

—
|

o
o

Conventional
(TRIM on)

Multi-Data

o
o

Update Throughput (ops/sec)

o
»~

0.2 T

Conventional
(TRIM off)

12 3 45 6 7 8 910111213141516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

Time (Minutes)
4190.568 Advanced Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

28

Results: GC Overheads

= Cassandra’s GC overheads

1.2

—_

o
o

Mun. App i \)‘A\

— The throughput is very corr |at

\/’brﬂeads f

(TRIM off) Conventlonal
(TRIM on) Multl DEYF)

Multi-Log

12 34567 8 910111213141516171819202122232425262728293031323334353637383940

o
B

Valid page copied (ops/sec)

Time (Minutes)

4190.568 Advanced Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

Results: Latency

* Cassandra’s cumulated latency distribution
* Multi-streaming improves write latency
* At 99.9%, Multi-Data lowers the latency by 53% compared to Normal

10— e 4 e
...........

99.9 e . — .-—_
- Y, R
S » -
< o99s . . _
c .
o MulApp -~ =
S 997 : _
= y -~ .
2 / Nlulti-Log/ -, Conventional
0 . - -~ {TRIRA 3
-— 99.6 ¥ (lnIIVI Ullj
= / B / P
- s P
2 o995 CE—E
o / ... / P
© 994 . '
Q - .
© / : /
S 993 K/
£ /it
35 992 i ,’
© 7 .

99.1 7 I

/9
99 it ‘ ‘ ‘ | | |
0 25 50 75 100 125 150 175

Latency (us)

4190.568 Advanced Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

Summary

= Mapping application and system data with different lifetimes to SSD
streams
* Higher GC efficiency, lower latency

" Multi-streaming can be supported on a state-of-the-art SSD and co-
exist with the traditional block interface

» Standardized in T10 SCSI (SAS SSDs) in 2015
= Standardized in NVMe 1.3 in 2017

31

Open-Channel SSD (OCSSD)

Why OCSSD?

1/0 Isolation Predictable Latency Data Placement & 1/O Scheduling
Enable I/O isolation No more guessing when an 10 Manage your non-volatile memory
between tenants by completes. You know which as a block device, through a file-

allocating your SSD into parallel unit is accessed on system or inside your application.
separate parallel units. disk.

https://platformlab.stanford.edu/Seminar%20Talks/Matias_Bj_rling____Javier_Gonzales.pdf
4190.568 Advanced Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 33

OCSSD Architecture

User-space
Application
Apps PP
liblightnvm
N\
Linux Traditional File-
Kernel System(s)
LightNVM Block Device File-System(s) with
(pblk) LightNVM support
N/
NVMe Device Driver
Physical Page Addressing
Open-Channel SSD
Media-Centric Hardware Acceleration

Metadata Management Management Engines

34

Zoned Namespace (ZNS) SSDs

Source: Matias Bjorling, How Zoned Namespaces Improve SSD Lifetime, Throughput, and Latency, FEMS, 2020.

Zoned Storage Model

= Zones are laid out sequentially in an
NVMe namespace

NVMe Namespace

* The zone size is fixed and applies to all 1

. [
Zones In the namespace Zone 0 | Zone 1 | Zone x-1
) 160 [LBA1 | | LBAz1
. eg,512 MiB
» The command set inherits the NVMe L == 1 oe1 | Z.

Command Set

[tam| tBam1 | | Ban2 | 1BAna |
— Write
Sequentially

* Built upon the conventional block interface
(Read,Write, Flush and other commands)

 Adds rules to collaborate on host and device
data placement

36

Writing to a Zone

= "Sequential Write Required”
* Must be written sequentially Empty Zone
* Must be reset if written to again Meamiezsm] A - T
= Fach zone has a set of associated wn(ieagor.;ger
attributes:
* Write pointer
* Zone Starting LBA
* Zone Capacity

Partially Written Zone

' LBA m(i.e., ZSLBA) | L LBA w ’ ‘ LBA n-1
\
e Zone state Y
written LBAs write pointer

(LBA w)

" Very similar to writing zones with
host-managed SMR HDDs

37

Reading from a Zone

" Writes are required to be sequential within a zone

* Reads may be issued to any LBA within a zone and in any order

Reads
Zone 0 Zone 1 Zone x-1
LBAO | LBA1 LBA z-1
Zone 0 Zone 1 Zone x-1

LBAm| LBA m+1 LBA n-2 LBA n-1

SMR HDDs and ZNS SSDs

* Host-managed SMR HDDs
* Implements the SMR (ZAC/ZBC) specifications
e ZAC: Zoned Device ATA Command Set in T | 3/SATA
o ZBC: Zoned Block Commands in T 10/SAS

== ——
]| L | e e
= I‘A:“ I_-gIAAAI—!'I —

—

Conventional HDD /
Data in discrete Data in zones of
tracks overlapped tracks

= NVMe ZNS SSDs

* Implements the Zoned Namespace Command Set specification
* Aligns with ZAC/ZBC to allow interoperability

" A single unified software stack support both storage types
* Utilizes the already mature Linux storage stack built for SMR HDDs

Image from https://blog.westerndigital.com/what-is-zoned-storage-initiative/
4190.568 Advanced Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 39

Zoned Storage Software Stack

Linux Kernel’s Zoned Subsystem (5.9)

SPDK (20.10)

User Space User Space
Applications
Applications without Zone Support Applications with Zone Support without Zone Applications with Zone Support
Support
7 7\ AN N
) — — — S D
AV A4 Linux
Regular File-Systems /w File-systems /w Kernel Regular
File-Systems Zone Support Zoned Storage File-Systems
(ext4 xfs) (f2fs, btrfs) (zonefs) (blobfs)
Device Device
Mapper Mapper
(dm-zoned) (ftl)
N/ N
Block Layer bdev
SCSI/ATA NVMe SCSI/ATA NVMe
AN AN
Z S Z S

ZBC/ZAC SMR HDDs & NVMe ZNS SSDs

40

Biscuit: A Framework for Near-Data
Processing of Big Data Workloads

(B. Gu et al., ISCA, 2016)

Some of slides are borrowed from the authors’ presentation.

Moving Data

" |[n memory hierarchy

* Move data toward ALU to remedy long latency while accessing high-locality data

CPU [Cache < DRAM (< HDD

" |n computation hierarchy

* Move computation toward memory to remedy long latency while accessing low-
locality data

CPU ‘ DRAM ‘ HDD

Hardware

= SSD with a user-programmable NDP (Near-Data Processing) framework

FECERGA S N & ltem Description
; Host interface PCle Gen.3 x4 (3.2 GB/s)
& Protocol NVMe 1.1
Device density 118
SSD architecture Multiple channels/ways/cores
Storage medium Multi-bit NAND flash memory
;B%'o Compute resources Two ARM Cortex R7 cores
"= for Biscuit @750MHz with MPU
= On-chip SRAM <1 MiB
DRAM > 1 GiB

[Inside of PM1725]

* Hardware pattern matcher on each flash memory channel

4190.568 Advanced Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

43

Runtime

= Cooperative multithreading
* A limited form of multithreading (fiber as a scheduling unit)
* Less context switch overhead
* Safe resource sharing without locking

* Shared nothing architecture
* All data transmission among threads through I/O ports
* Enforced by the programming model and APIs

* Dynamic loader for user programs
* User program as position-independent code (PIC)
* Symbol relocation to locate each program in a separate address space

44

host-side program

host-side
Task

host-side
Task

libsisc

Biscuit System Architecture

SSD-side module

libslet
SSD-side SSD-side SSD-side
Task Task Task :

II/O requests

SSD firmware

main
memory

Host system

4190.568 Advanced Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

Host interface controller]

DRAM f,
hardware

pattern matcher

Channel #0

Channel #(n,-1)

Biscuit-enabled SSD

45

Development Process

Host-side task SSB—side task

Fimarke o,)

b
e 3CLE1 TN TVFE<SRison), 5w, SRS,
O TS

X86 ARM cross
compile compile

Host SSD-side
program module

@ Copy the module

y Into /var/isc/slets
(/dev/nvmeOn1)
v
Host
Run the host
@ un the host program Computer

4190.568 Advanced Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

TPC-H Results

= Data analytics on MariaDB

e TPC-H dataset at a scale factor
of 100 (160GiB)

* 6.Ix on average

* 3.6x speedup for running
all queries
(two days vs. | 3 hours)

|/0O Ratio

-19'6X -21'0X 2.7x 3.8x 1.0x 1.4x _10.9x

0
Q14 Q2 Q10 Q8 Q9 Q17 Q12 Q5 GM

4.6X 6.1x
— _2.8x 1.6x 1.2x 1.1x

47

Key-Value SSD (KVSSD)

Block: Parking Lot Structure

" A driver (host) is responsible for parking (data management)

Q|
0
(L0
[0
0
0
o0
(1]
Q@

o 0w
w 0.0
Q0 ® 0
O 0.0
o 00 0
[l]
o, w0
o @O
o0 Q@ oo

Parking Lot

VS

4 7
Z

d

N

e ~/

Block Storage Device

49

Object:Valet Parking

= A parking facility (storage) is responsible for parking (data management)

“music”

)
“photo” =
[u
g 2P
R

VS

&

“zip file”

Valet Parking

“document” -

= 5

N ——
Object Storage Device

KV Stores Common in Systems at Scale

amazon
&oirbnb : DynamoDB

®Rakuten

2 f

ey Value
. - ‘ Store i
Linkedfl] (@ Pinterest

" EVCache

rlpple

4190.568 Advanced Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

51

KVSSD Prototype

"= Samsung KV-PM983

SAMSUNG

S4LR020
SITHENYZ

NGSFF KV SSD

Form factor: NGSFF/U.2

Capacity: 1-16TB

Interface: NVMe;PCIeGen.?o ;: |1 '!

52

Key ldea

£

Dayrplgfr?gDB e . e redl S . mongoDB 1:{3?1

e =

levelps

Host S/W

WIREDT 1G5 Nt

Thin KV Library

Block Device Driver

TX/s t

A

‘WAF, RAF, Latency

\ 4

KV Device Driver KV

Block Device

Traditional KV Store

KV Device

SAMSUNG

KV Stacks

KVSSD Design

= Key size:up to 255B

" Value size: up to 2MB
" https://github.com/OpenMPDK/KVSSD

=\

Storage Server
Read/Write User Data
Key Size Range ? Value Size Range ?

Key\%ize

Valu} Size

Key Value I/F Command

A V Get (key) / Put (Key, Value)

Key Value SSD device driver

L

Lookup /
Check hash collision

A4

Key Value SSD

User/Device Hash Key

--- PO At ot dat v et ey e dons cout us e dout toes et e ey bus et s

Phy ical Location / Offset

Meta data

Key Value

4190.568 Advanced Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

54

https://github.com/OpenMPDK/KVSSD

KVSSD Software Stack

@redis bogrs @

ceph

Key Value Library & Tools

[Cache] [AIOJ [Multi-Queue] [Multi-Device] [Memory I\/Ianager] [Tools J

KV Abstract Device Interface (ADI)

[store/retrieve/delete/exist] [KV Pair J

[Namespace J

Linux Kernel Device Driver

Linux User-space Device Driver

Windows Device Driver

55

RocksDB vs. KVYSSD

= RocksDB

* Originated by Facebook and actively used in their infrastructure
Most popular embedded NoSQL database
Persistent Key-Value store

Optimized for fast storage (e.g., SSD)

Uses Log-Structured Merge (LSM) Tree architecture

= KV Stacks on KVSSD
* Benchmark tool directly operates on KVSSD through KV Stacks

4190.568 Advanced Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

56

RocksDB vs. KVSSD: Evaluation

 Better Performance

Block SSD

KV SSD

Client: kvbench

RocksDB Key Value API
Filesystem VS. Key Value ADI
Block Driver KV Driver

PM983

KV-PM983

Lean software stacks
Overhead moved to device

* 10 Efficiency

Reduction of host traffic to
devices

KV Stacks
Hardware Intel(R) Xeon(R) CPU E5-2630 v3 @ 2.40GHz
96 GB RAM
PM983(Block) & KV-PM983 SSD
Software Ubuntu 16.04

RocksDB v5.0.2 on XFS
50M records, 16B Key, 4KB value

57

RocksDB vs. KVSSD: Results

* Random PUT performance

* 8x more QPS (Query Per Second) with KV Stacks than RocksDB on block SSD
* 90+% less traffic goes from host to device with KV SSD than RocksDB on block

device

Relative QPS
o =] w B 9] [#)] ~ 0 [(s]

.

RocksDB(PM983) KV Stacks(KV-PM983)

Device 10/User 10

14

12

10

10
EA~

B

RocksDB(PM983)

KV Stacks(KV-PM983)

* Workload: 100% random put, 16-byte keys of random uniform distribution, 4KB-fixed values on single PM983 and KV-PM983 in a clean state

4190.568 Advanced Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

58

Computational Storage

SNIA: Computational Storage Instances

FPGA to Multi-SSDs FPGA+SSD Controller FPGA Only ASIC

4190.568 Advanced Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

60

SNIA: Computational Storage Devices (CSx

90a464ba-7435-49¢7-9a1c-25ee57e71ead i

Fabric (F

Cle, Ethernet, etc

; |
= (€
. f)
.

Traditional Computational Computational Computational Storage Drive Computational Storage Array
Storage Device Storage Processor Storage Drive (Access via CSP and/or direct to Storage) (Access via CSP and/or direct to Storage)

4190.568 Advanced Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 61

NGD Newport SSD

(

Application processing subsystem

NEON ™

ARM® Cortex™-A53 S
Application processor

DRAM
(16 GB)

FPU

32 KB 32 KB
ARM® |-cache D-cache MMU DDR ARM®
Cortex™-M7 controller Cortex™-M7
- back-end
rontend Packend

% k| e =

‘Flash Mémory =

NVM E/ high-speed interconnect
PCle Flach
dasin memory
Interface Fast ARM® | [+ R gt
Released Cortex™-M7

. - PCle NVMe | AES-256 Buffer [€™] <_>
controller | controller | engine 3 MIC (channel #2)

® .
ECC ARM Flash memory
™ _ —
(VCR-LDPC) Cortex™ M7 (channel #16)

\. /

Source: J. Do et al., "Cost-effective, Energy-efficient, and Scalable Storage Computing for Large-scale AI Applications, ACM ToS, 2020.
62

NGD Newport SSD: Software Stack

HOST Newport CSD
I e e -
E Operating System In-storage Processing)
1 et e e e EEEEE Bl EE "
i | Operating System i
1 1
_ OSIModel L AL Userspace i kemelspace H] | L\ (P
Application i ! L S|t Controller
| | IR
Presentation ' ‘%0 2 PN
Al gk
. = |a| | ~—— NAND
4 EEE IR e | S 1
S i | 2 Flash
—-
S | L8 Memory
@i 2 <
q ¥y
Ly T 5
5|l : 3
&l i
oy M. M= ¥ _______]
o i
< i
1
1
1
|
| | e
|
|
1 evmrarateeseeneseresenanane e e e eSS SES RS TR TTS T SRS e e

PCle Bus

Source: J. Do et al., "Cost-effective, Energy-efficient, and Scalable Storage Computing for Large-scale AI Applications, ACM ToS, 2020.
4190.568 Advanced Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 63

Eideticom NolLoad CSP

* NVMe computational accelerators
* Compression
* Encryption

* Erasure coding

Deduplication

Data analytics
Al and ML

4190.568 Advanced Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

World’s First NVMe-based
Computational Storage
Processor

64

Samsung SmartSSD

= PM983F
= Xilinx FPGA

FPGA + DRAM (Up to 8GB) SSD 1TB - PM983

PCle Gen3 x4

FPGA /| DRAM
Read/Write

4190.568 Advanced Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

