Jin-Soo Kim
(jinsoo.kim@snu.ac.kr)

Systems Software &
Architecture Lab.

Seoul National University

Fall 2020

Superpages

(Juan Navarro et al., OSDI '02)

Motivation

= TLB coverage

0.01%
: ®

'86 ’'88 ’90 ’92 ’94 ’96 ’98 ’00 ’2
TLB miss overhead: Year of workstation manufacture
< 5%

% 10 %I F | | | | 7
* The amount of memory 9 @ §
accessible through cached > [|
mappings in the TLB 2 1% ¢ ® -
= SECIEPS z
g 0.1% ¢ @ Lé(E
3 : ® @ :
© © O @
2
3
-
|_

Superpages

* Memory pages of larger sizes than base pages
* Supported by most modern CPUs

= Otherwise, same as normal pages
* Power of 2 size

* Use only one TLB entry

Contiguous (physically and virtually)

Aligned on superpage boundary

Uniform protection attributes

One reference bit, one dirty bit

TLB with Superpages

virtual memory

virtual
address

base page entry (size=1)

TLB

superpage entry (size=4)

physical memory -

physical
address

Alpha:
8/64/512KB, 4MB
i386:
4KB, 4AMB
x86_64:
2MB, 1GB
Itanium:
4/8/16/64/256KB,
1/4/16/64/256MB

4190.568 Advanced Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

Using Superpages for Base Pages

* Why!

* Increased TLB coverage without enlarging the TLB size

* Why not!
* Enlarged application footprint
* Increased internal fragmentation due to partly used pages
* Premature onset of memory pressure
* Higher I/O demands due to increased paging granularity

4190.568 Advanced Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

Issue |:Superpage Allocation

* How / when / what size to allocate!
= Relocation-based: requires memory copy

* Reservation-based: superpage size to reserve!

“ n n virtual memory
“ n n physical memory

superpage boundaries

Issue 2: Promotion

" Create a superpage out of a set of smaller pages
* Promotion can be performed incrementally

* When to promote!

Forcibly populate pages?
May incur 1/O cost or increase
internal fragmentation

Wait for app to touch pages? May lose
opportunity to increase TLB coverage

Create small superpage?
May incur overhead

Issue 3: Demotion

* Convert a superpage into smaller pages

* When page attributes of base pages of a superpage become non-
uniform

* During partial pageouts

* All portions of a superpage not actively used

* Problem:
* Hardware only maintains a single reference bit for the superpage

* Which portions of a superpage are actively used?

Issue 4: Eviction

" |nactive superpages evicted from physical memory on memory pressure

* Problem: dirty pages

* Hardware maintains a single dirty bit for the superpage
* Which base pages should be flushed?

Issue 5: Fragmentation

* Memory becomes fragmented due to
* Use of multiple page sizes

* Scattered wired (non-pageable) pages

= Contiguity: contended resource

= OS must
* Use contiguity restoration techniques
* Trade off impact of contiguity restoration against superpage benefits

4190.568 Advanced Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

10

Overall Design

= Observation: Once an application touches the first page of a memory
object then it is likely that it will quickly touch every page of that object
* Superpages as large and as soon as possible

* As long as no penalty if wrong decision

= Reservation-based superpage management

= Support for multiple superpage sizes

" Scalability to very large superpages

* Demotion of sparsely referenced superpages

* Effective preservation of contiguity without the need for compaction

= Efficient disk I/O for partially modified superpages

11

Superpage Allocation

= Reservation-based (preemptible) allocation

* On a page fault, determine a preferred superpage size

* Only the mapping for the faulting page is inserted into the page table

* The rest of frames are tentatively reserved for potential future use

Afefclo

virtual memory

superpage boundaries
ﬁpTef:rred superpage size

Afefcfo

physical memory

12

Preferred Superpage Size

= Observation

* Too large superpage > Can be preempted later
* Too small superpage = Need relocation

= Opportunistic policy
* The largest, aligned superpage that contains the faulting page, not overlapped with
existing reservations or allocated pages

* For fixed size memory objects (e.g., code, data, memory-mapped files):
No larger than the memory object

* For dynamically sized memory objects (e.g., stack, heap):
The superpage size is limited to the current object size

4190.568 Advanced Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

13

Preempting Reservations

* When free physical memory
becomes scarce or
excessively fragmented

" Victim selection:
Reservation that the most
recent population was done
least recently

@

least recently allocated =2 ...

@

- most recently allocated

A 4

largest unused (and aligned) chunk

14

Incremental Promotions

4+2

Speculative Demotions

" |ncremental demotion
* When a base page is selected for eviction
* When the protection attributes are changed on part of a superpage
* Demoted incrementally to the smaller superpage sizes

" Speculative demotion
* How to detect portions of a superpage not referenced anymore!?
* On memory pressure, demote superpages when resetting reference bit
* Re-promote (incrementally) as pages are referenced

4190.568 Advanced Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

16

Evicting Dirty Superpages

* One dirty bit per superpage
* What’s dirty and what’s not!?

* Demote on first write to clean superpage

"= Re-promote (incrementally) as other pages are dirtied

write

IIIII?II mel 1 00

* |Inferring dirty pages using hash digests!?

Population Map

= Use hash table + radix tree

= Each level corresponds to
a page size

* Reserved frame lookup
= Overlap avoidance
* Promotion decision

* Preemption assistance

(somepop, fullpop)

31

AN

N
| =

FreeBSD Implementation

" FreeBSD lists of pages
* Active: access recently (reference bit can be either 0 or 1)
* Inactive: mapped, not referenced for a long time

* Cache: clean and unmapped

= Contiguity-aware page daemon

* Use cache pages for reservations
— If a cache page is referenced, the associated reservation is preempted

* On low contiguity, move clean, inactive pages to the cache list
— Prefer pages that contribute the most to contiguity

* Clean file pages moved to the inactive list when the file is closed

* Cluster wired pages

4190.568 Advanced Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

19

Experimental Setup

* FreeBSD 4.3

» Alpha 21264 @ 500MHz, 512MB RAM

= 8KB, 64KB, 512KB, 4MB pages

= |28-entry DTLB, 128-entry ITLB

* Unmodified applications from SPEC CPU2000 benchmark and others

Best-case Performance

= 30%+ in 8 out of 35 benchmarks

Superpage usage

Miss

Bench- 8 64 512 4 reduc Speed-

mark KB KB KB | MB (%) up

CINT2000 1.112
gz1p 204 22 21 42 80.00 1.007
vpr 253 29 27 9 || 99.96 1.383
gcce 1209 | 17 35 70.79 1.013
mcft 206 7 10 46 99.97 1.676
crafty 147 13 2 0 99.33 1.036
parser 168 5 14 8 || 99.92 1.078
eon 297 6 0 0 0.00 1.000
perl 340 9 17 34 96.53 1.019
gap 267 8 7 47 99.49 1.017
vortex 280 4 15 17 99.75 1.112
bzip2 196 21 30 42 99.90 1.140
twolf 238 13 7 0 99.87 1.032

21

Multiple Superpage Sizes

Speedups

TLB miss
reduction (%)

Benchmark 64KB | 512KB | 4MB All
CINT2000 1.05 1.09 | 1.05 1.11
Vpr 1.28 1.38 | 1.13 1.38
mct 1.24 1.31 1.22 1.68
vortex 1.01 1.07 | 1.08 1.11
bzip2 1.14 1.12 | 1.08 1.14
Benchmark 64KB 512KB 4MB All
CINT2000
Vpr 82.49 98.66 | 45.16 || 99.96
mef 55.21 84.18 | 53.22 || 99.97
vortex 46.38 92.76 | 80.86 || 99.75
bzip2 99 .80 99.09 | 49.54 || 99.90

22

Fragmentation Control

" Web server to create memory fragmentation + four runs of FFTW
* Cache:all cached pages are used for superpages

* Daemon: contiguity-aware page replacement daemon

2 [1Cache W Daemon 80 ' T ' '
;\;" Cache
 — > 60 Daemon
=3 5
& S 40 f
o)
- ©
0 : : . T;: 20 1
1 2 3 4 < i
2 ; | il
0 2 4 6 8
time >

Experimental time (minutes)

Summary

" Superpages: 30%+ improvement
* Transparently realized, low overhead

= Contiguity restoration is necessary

* Sustains benefits, low impact

= Multiple page sizes are important
pl€ pag P

* Scales to very large superpages

24

Follow-up: Ingens [0sDI '16]

* Huge page support in x86-64
* Base page: 4KB
* Huge pages: 2MB, | GB

= Problems in Linux
* High page fault latency

— Zeroing, synchronous promotion, memory compaction, etc.

* Memory bloating (due to greedy allocation)
— Greedy allocation

* Unfair huge page allocation among virtual machines
* Uncoordinated with KSM (Kernel Same-page Merging)

4190.568 Advanced Operating Systems | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

25

