
USENIX Association

Proceedings of the
5th Symposium on Operating Systems

Design and Implementation

Boston, Massachusetts, USA
December 9–11, 2002

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2002 by The USENIX Association All Rights Reserved For more information about the USENIX Association:

Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.



Practical, transparent operating system support for superpages

JuanNavarro
�

SitaramIyer
�

PeterDruschel
�

Alan Cox
�

jnavarro,ssiyer, druschel,alc @cs.rice.edu
�
RiceUniversity�

RiceUniversityandUniversidad Católica deChile

Abstract

Most general-purpose processors provide support for
memorypages of large sizes,called superpages. Su-
perpagesenable each entry in the translationlookaside
buffer (TLB) to mapa largephysicalmemoryregioninto
a virtual addressspace. This dramatically increases
TLB coverage, reducesTLB misses,and promisesper-
formanceimprovementsfor manyapplications. How-
ever, supportingsuperpagesposesseveral challengesto
the operating system,in termsof superpage allocation
andpromotiontradeoffs, fragmentation control, etc. We
analyze theseissues,and proposethe designof an ef-
fectivesuperpage managementsystem.We implement it
in FreeBSDon the Alpha CPU, and evaluate it on real
workloadsandbenchmarks.We obtain substantial per-
formancebenefits,oftenexceeding30%; thesebenefits
aresustainedevenunderstressfulworkloadscenarios.

1 Intr oduction

Modern general-purpose processors provide virtual
memory support, usingpagetablesfor addresstransla-
tion. Most processorscachevirtual-to-physical-address
mappings from the pagetablesin a translationlooka-
sidebuffer (TLB) [10]. TLB coverage is definedasthe
amountof memory accessiblethrough thesecachedmap-
pings, i.e., without incurring missesin the TLB. Over
the last decade,TLB coveragehasincreasedat a much
lower pacethanmain memory size. For mostgeneral-
purposeprocessorstoday, TLB coverageis a megabyte
or less,thusrepresentingaverysmallfractionof physical
memory. Applicationswith largerworking setscanincur
many TLB missesandsuffer from a significant perfor-
mancepenalty. To alleviate this problem,mostmodern
general-purposeCPUsprovidesupport for superpages.

A superpage is a memory pageof largersizethanan
ordinary page(henceforthcalleda basepage). They are
usually available in multiple sizes,often up to several
megabytes. Eachsuperpageoccupiesonly oneentry in

the TLB, so the TLB coveragedramaticallyincreases
to cover the working setof mostapplications. This re-
sultsin performance improvementsof over 30%in many
cases,aswedemonstratein Section6.2. Recentresearch
findingsontheTLB performanceof modernapplications
statethatTLB missesarebecoming increasingly perfor-
mancecritical [9].

However, inappropriateuseof large superpages can
result in enlarged application footprints, leadingto in-
creasedphysical memory requirementsandhigher pag-
ing traffic. TheseI/O costscaneasilyoutweigh any per-
formanceadvantagesobtainedby avoiding TLB misses.
Therefore the operating systemneedsto usea mixture
of page sizes. The useof multiple page sizesleadsto
theproblemof physicalmemory fragmentation,andde-
creasesfuture opportunitiesfor usinglarge superpages.
To ensuresustainedperformance,the operating system
needsto control fragmentation,without penalizing sys-
temperformance. Theproblem of effectively managing
superpagesthusbecomes a complex, multi-dimensional
optimization task. Most general-purposeoperating sys-
temseitherdo not support superpagesat all, or provide
limited support [6, 19, 20].

This paperdevelops a general andtransparent super-
pagemanagementsystem.It balancesvarious tradeoffs
while allocatingsuperpages, so as to achieve high and
sustainedperformancefor realworkloadsandnegligible
degradationin pathological situations.Whena process
allocatesmemory, our systemreservesa largercontigu-
ous region of physical memory in anticipationof sub-
sequentallocations. Superpagesarethencreatedin in-
creasingsizesas the process touchespagesin this re-
gion. If thesystemlaterrunsout of contiguousphysical
memory, it maypreempt portions of unusedcontiguous
regionsfrom theprocessesto whichthey wereoriginally
assigned.If theseregions areexhausted,then the sys-
temrestorescontiguity by biasingthepagereplacement
schemeto evict contiguous inactive pages. This system
is implementedin FreeBSDon the Alpha architecture,
andis evaluatedon realapplications andbenchmarks. It



is shown to yield substantialbenefitswhenmemory is
plentiful andfragmentationis low. Furthermore,it sus-
tainsthesebenefitsoverthelongterm,by controlling the
fragmentationarisingfrom complex workloadscenarios.

The contributions of this work are four-fold. It ex-
tendsa previously proposedreservation-basedapproach
to work with multiple, potentially very large superpage
sizes,anddemonstratesthebenefitsof doingso; it is, to
our knowledge,thefirst to investigate theeffect of frag-
mentationonsuperpages;it proposesanovel contiguity-
aware pagereplacement algorithm to control fragmen-
tation; andit tacklesissuesthathave to datebeenover-
lookedbut arerequired to makeasolutionpractical,such
assuperpagedemotion andeviction of dirty superpages.

Section2 motivates the problem and establishesits
constraints andcomplexities. Section3 examinesthere-
latedwork on superpages. Section4 and5 describeour
designand implementation,andSection6 presentsthe
resultsof anexperimentalevaluation. Finally, Section7
concludes.

2 The superpageproblem

This section discussesthe motivation, hardware con-
straints,issuesandtradeoffs in operating systemsupport
for superpages.

2.1 Moti vation

Main memory hasgrown exponentially in size over at
leastthe last decadeand,ascauseor consequence, the
memory requirementsof applications have proportion-
ally increased[20]. In contrast,TLB coveragehaslagged
behind. TheTLB is usuallyfully associative andits ac-
cesstime must be kept low, since it is in the critical
path of every memory access[13]. Hence,TLB size
hasremained relatively small, usually128 or fewer en-
tries, corresponding to a megabyte or lessof TLB cov-
erage.Figure1 depictstheTLB coverageachieved asa
percentageof main memorysize, for a number of Sun
andSGIworkstationmodelsavailablebetween1986and
2001. Relative TLB coverageis seento be decreasing
by roughly a factor of 100 over ten years. As a con-
sequence, many modernapplications have working sets
larger than the TLB coverage. Section6.3 shows that
for many realapplications, TLB missesdegradeperfor-
manceby asmuchas30%to 60%,contrastingto the4%
to 5%reportedin the1980’s [2, 24] or the5%to 10%re-
portedin the1990’s [17, 23]. Anothertrendthathascon-
tributedto thisperformancedegradationis thatmachines
arenow usually shippedwith on-board,physically ad-
dressedcachesthatarelargerthantheTLB coverage.As
aresult,many TLB missesrequireaccessto thememory

banks to find a translationfor datathat is already in the
cache,makingmissesrelatively moreexpensive.

0.01 %

0.1 %

1 %

10 %

’86 ’88 ’90 ’92 ’94 ’96 ’98 ’00 ’02T
LB

 c
ov

er
ag

e 
/ m

ai
n 

m
em

or
y 

si
ze

 (
%

)

�

Year of workstation manufacture

A

B

C

D

E

F

G

H
I

J

K

L

M

N O

P
Q

R

Figure 1: TLB coverage as percentage of main memory for
workstations, 1986-2001 (data collected from various websites).
(A) Sun 3/50; (B) Sun 3/180; (C) Sun 3/280; (D) Personal Iris;
(E) SPARCstation-5; (F) Iris Indigo; (G) SPARCstation-10; (H)
Indy; (I) Indigo2; (J) SPARCstation-20; (K) Ultra-1; (L) Ultra-2;
(M) O2; (N) Ultra-5; (O) Ultra-10; (P) Ultra-60; (Q) Ultra-450;
(R) Octane2.

We therefore seeka methodof increasingTLB cover-
agewithout proportionally enlarging theTLB size. One
option is to alwaysusebasepagesof a larger size,say
64KB or 4MB. However, this approachwould causein-
creasedinternal fragmentationdueto partly usedpages,
and therefore induce premature onsetof memory pres-
sure[22]. Also, the I/O demandsbecomehigher dueto
increasedpaginggranularity.

In contrast,the useof multiple pagesizesenables an
increasein TLB coveragewhile keepinginternal frag-
mentationanddisk traffic low. This technique,however,
imposesseveral challenges upon the operating system
designer, whicharediscussedin therestof this section.

2.2 Hardware-imposedconstraints

Thedesignof TLB hardwarein mostprocessors imposes
a seriesof constraintson superpages.Firstly, thesuper-
pagesizemustbe amonga setof page sizessupported
by theprocessor. For example, theAlpha processorpro-
vides8KB basepagesand64KB, 512KB and4MB su-
perpages; the i386 processorfamily supports 4KB and
4MB pages,andthenew Itanium CPUprovidestendif-
ferentpagesizesfrom 4KB to 256MB.

Secondly, a superpage is required to becontiguousin
physical andvirtual addressspace.Thirdly, its starting
address in the physical and virtual address spacemust
bea multipleof its size;for example, a 64KB superpage
mustbealignedona 64KB addressboundary.

Finally, the TLB entry for a superpageprovidesonly
a singlereferencebit, dirty bit, andsetof protectionat-



tributes.Thelatterimpliesthatall basepagesthatform a
superpagemusthavethesameprotectionattributes(read,
write,execute). Also,dueto thecoarsegranularity of ref-
erenceanddirty bits,theoperating systemcandetermine
whethersomepartof thesuperpagehasbeenaccessedor
written to, but cannotdistinguish betweenbasepagesin
this regard.

2.3 Issuesand tradeoffs

The task of managing superpagescan be conceptually
broken down into a seriesof steps,eachgovernedby a
different set of tradeoffs. The forthcoming analysis of
theseissuesis independentof any particularprocessor
architecture or operatingsystem.

We assumethatthevirtual addressspaceof eachpro-
cessconsistsof asetof virtual memory objects.A mem-
ory object occupiesa contiguousregion of the virtual
addressspaceandcontains application-specificdata,as
shown in Figure2. Examplesof memory objects include
memory mappedfiles,andthecode,data,stackandheap
segments of processes.Physical memory for theseob-
jects is allocatedas and when their pagesare first ac-
cessed.

Allocation: Whena pagein a memory object is first
touched by the application, the OS allocatesa physical
pageframe, and mapsit into the application’s address
space.In principle, any availablepageframecanbeused
for this purpose,just as in a systemwithout superpage
support. However, shouldthe OS later wish to create
a superpage for theobject,alreadyallocatedpages may
require relocation(i.e., physical copying) to satisfy the
contiguity andalignment constraintsof superpages.The
copying costsassociatedwith this relocation-basedallo-
cationapproachcanbedifficult to recover, especiallyon
a busysystem.

An alternative is reservation-basedallocation. Here,
the OS tries to allocatea pageframe that is part of an
available,contiguousrange of pageframesequal in size
and alignment to the maximal desiredsuperpage size,
andtentatively reserves theentiresetfor useby thepro-
cess.Subsequently, whentheprocessfirst touchesother
pagesthatfall within theboundsof areservation, thecor-
responding basepageframesareallocatedandmapped.
ShouldtheOSlaterdecideto createa superpagefor this
object,theallocatedpageframesalreadysatisfythecon-
tiguity andalignment constraints. Figure2 depictsthis
approach.

Reservation-based allocation requires the a priori
choiceof asuperpagesizeto reserve,without foreknowl-
edgeof memory accessestoneighbouringpages.TheOS
mayoptimisticallychoosethedesiredsuperpagesizeas
the largestsupportedsizethat is smalleror equal to the

sizeof thememory object,but it mayalsobiasthis deci-
sionon theavailability of contiguousphysical memory.
TheOSmusttradeoff theperformancegainsof usinga
largesuperpageagainstthe optionof retaining the con-
tiguous regionfor later, possiblymore critical use.

address
Virtual

space

allocated
page frame

alignment
superpage

boundary

Object
mapping

address
space

Physical

reservation

mapped pages

unused
page frame

Figure 2: Reservation-based allocation.

Fragmentation control: Whencontiguousmemory is
plentiful, the OS succeedsin using superpagesof the
desiredsizes,and achieves the maximum performance
dueto superpages.In practice,reservation-basedalloca-
tion, useof different pagesizesandfile cacheaccesses
have the combined effect of rapidly fragmentingavail-
ablephysicalmemory. To sustainthebenefitsof super-
pages,theOSmayproactively releasecontiguouschunks
of inactivememoryfrompreviousallocations,atthepos-
sible expenseof having to perform disk I/O later. The
OSmayalsopreempt anexisting,partiallyusedreserva-
tion, given thepossibilitythatthereservationmaynever
become a superpage. The OS musttherefore treatcon-
tiguity asa potentially contendedresource,andtradeoff
the impactof various contiguity restorationtechniques
against thebenefits of usinglargesuperpages.

Promotion: Once a certain number of base pages
within apotential superpagehavebeenallocated,assum-
ing thatthesetof pages satisfytheaforementionedcon-
straintsonsize,contiguity, alignmentandprotection, the
OSmaydecideto promotetheminto a superpage.This
usuallyinvolves updatingthepagetableentriesfor each
of theconstituentbasepagesof thesuperpageto reflect
the new superpagesize. Oncethe superpagehasbeen
created,asingleTLB entrystoringthetranslationfor any
addresswithin the superpage sufficesto mapthe entire
superpage.

Promotion can also be performed incrementally.
When a certainnumber of basepageshave beenallo-
catedin acontiguous,alignedsubsetof areservation, the
OSmaydecide to promotethesubsetinto a smallsuper-
page.Thesesuperpagesmaybeprogressively promoted



to larger superpages,up to thesizeof theoriginal reser-
vation.

In choosingwhen to promote a partially allocated
reservation, the OS must tradeoff the benefits of early
promotion in termsof reducedTLB missesagainst the
increasedmemoryconsumptionthatresultsif notall con-
stituentpagesof thesuperpageareused.

Demotion: Superpage demotion is the process of
marking pagetable entriesto reducethe size of a su-
perpage, either to basepagesor to smallersuperpages.
Demotion is appropriate when a processis no longer
actively usingall portions of a superpage,andmemory
pressurecalls for theeviction of theunusedbasepages.
Oneproblemis thatthehardwareonly maintainsasingle
referencebit for thesuperpage,making it difficult for the
OSto efficiently detectwhichportionsof asuperpageare
actively used.

Eviction: Evictionof superpagesis similar to theevic-
tion of basepages. When memory pressuredemands
it, an inactive superpagemay be evicted from physical
memory, causingall of its constituentbasepageframes
to becomeavailable. When an evicted page is later
faultedin, memory is allocatedanda superpagemaybe
createdin thesameway asdescribedearlier.

One complication ariseswhen a dirty superpage is
pagedout. Sincethe hardwaremaintainsonly a single
dirty bit, thesuperpagemayhave to beflushedout in its
entirety, eventhough someof its constituent basepages
maybeclean.

Managing superpagesthusinvolves a complex setof
tradeoffs; otherresearchershavealsoalluded to someof
theseissues[12, 13]. Thenext sectiondescribesprevious
approachesto theproblem,andSection4 describeshow
ourdesigneffectively tacklesall theseissues.

3 Relatedapproaches

Many operating systemsusesuperpagesfor kernel seg-
mentsand framebuffers. This sectiondiscussesexist-
ing superpagesolutions for application memory, which
is thefocusof this work. Theseapproachescanbeclas-
sified by how they managethe contiguity required for
superpages: reservation-basedschemestry to preserve
contiguity; relocation-basedapproachescreatecontigu-
ity; andhardware-basedmechanismsreduceor eliminate
thecontiguity requirementfor superpages.

3.1 Reservations

Reservation-basedschemesmake superpage-aware allo-
cationdecisionsat page-fault time. On eachallocation,
they usesomepolicy to decidethepreferredsizeof the
allocationandattemptto find acontiguousregionof free
physicalmemory of thatsize.

Talluri andHill proposea reservation-basedscheme,
in which a region is reservedat page-fault time andpro-
motedwhenthenumber of framesin usereachesa pro-
motionthreshold. Undermemory pressure,reservations
canbe preemptedto regain free space[20]. The main
goal of Talluri and Hill’ s designis to provide a sim-
ple, best-effort mechanismtailoredto theuseof partial-
subblock TLBs, whicharedescribedin Section3.3.

In contrast,superpagesin both the HP-UX [19] and
IRIX [6] operatingsystemsareeagerlycreatedat page-
fault time. Whenapageis faultedin, thesystemmayal-
locateseveralcontiguous framesto fault in surrounding
pagesandimmediately promote theminto a superpage,
regardlessof whether the surroundingpagesare likely
to be accessed.Although pages are never actually re-
served, this eagerpromotionmechanismis equivalentto
areservation-basedapproachwith apromotionthreshold
of oneframe.

In IRIX andHP-UX, the preferred superpagesize is
basedon memory availability at allocation time, andon
a user-specified per-segment pagesize hint. This hint
is associatedwith an application binary’s text anddata
segments; IRIX also allows the hint to be specifiedat
runtime.

Themaindrawback of IRIX andHP-UX’s eagerpro-
motion is that it is not transparent. It requires experi-
mentationto determine theoptimumsuperpage sizefor
thevarioussegments of a givenapplication. A subopti-
malsettingwill resultin lowerperformance,duetoeither
insufficient TLB coverageif superpagesaretoosmall,or
unnecessarypaging andpage population costsif super-
pagesaretoo large.

3.2 Pagerelocation

Relocation-basedschemescreatesuperpagesby physi-
cally copying allocatedpageframes to contiguous re-
gionswhenthey determine thatsuperpagesarelikely to
be beneficial. Relocation-basedapproachescanbe en-
tirely and transparently implemented in the hardware-
dependent layer of the operating system,but they need
to relocatemostof the allocatedbasepagesof a super-
pageprior to promotion, even whenthereareplenty of
contiguousavailableregions.

Romeretal. proposeacompetitivealgorithm thatuses
onlinecost-benefit analysisto determine whenthe ben-
efits of superpagesoutweigh theoverheadof superpage



promotionthroughrelocation [16]. Theirdesignrequires
a software-managedTLB, sinceit associateswith each
potential superpagea counterthat must be updatedby
the TLB misshandler. In the absence of memory con-
tention, this approachhasa strictly lower performance
thana reservation-basedapproach,because, in addition
to the relocation costs,(1) therearemoreTLB misses,
sincerelocation is performedasa reactionto an exces-
sive number of TLB misses,and (2) TLB missesare
moreexpensive— by afactorof four or more,according
to Romeretal. — dueto amorecomplex TLB misshan-
dler. On the otherhand,a relocationapproachis more
robustto fragmentation.

Reservations and page relocation can complement
eachother in a hybrid approach. One way would be
to userelocation whenever reservations fail to provide
enough contiguity and a large number of TLB misses
is observed. Alternatively, page relocationcanbe per-
formedasabackgroundtaskto dooff-line memorycom-
paction. The goal is to merge fragmentedchunks and
gradually restorecontiguity in thesystem.TheIRIX co-
alescingdaemon does thisandis describedin [6], but no
evaluation is presented.

3.3 Hardwaresupport

The contiguity requirementfor superpages can be re-
ducedor eliminatedby meansof additional hardware
support.

Talluri and Hill study different TLB organizations.
They advocatepartial-subblock TLBs, whichessentially
contain superpage TLB entriesthat allow “holes” for
missingbasepages.They claim thatwith this approach
most of the benefitsfrom superpagescan be obtained
with minimalmodifications to theoperatingsystem[20].
Partial-subblockTLBs yield onlymoderatelylargerTLB
coveragethanthebasesystem,andit is not clearhow to
extendthepartial-subblock TLBs to multiple superpage
sizes.

Fangetal. describeahardware-basedmechanismthat
completely eliminatesthecontiguity requirementof su-
perpages. They introduceanadditional level of address
translationin the memory controller, so that theoperat-
ing systemcanpromotenon-adjacentphysicalpagesinto
a superpage. This greatlysimplifiesthetaskof theoper-
atingsystemfor supporting superpages[3].

To thebestof ourknowledge,neitherpartial-subblock
TLBs nor address-remapping memory controllers are
supportedoncommercial, general-purposemachines.

Our approachgeneralizesTalluri and Hill’ s reserva-
tion mechanism to multiple superpagesizes. To regain
contiguity on fragmentedphysical memory without re-
locatingpages,it biasesthe pagereplacement policy to

selectthosepagesthatcontributethemostto contiguity.
It also tacklesthe issuesof demotion andeviction (de-
scribedin Section2.3)not addressedby previouswork,
anddoesnot requirespecialhardwaresupport.

4 Design

Ourdesignadopts thereservation-basedsuperpageman-
agement paradigm introducedin [20]. It extendstheba-
sic designalongseveraldimensions,suchassupport for
multiple superpagesizes,scalabilityto very largesuper-
pages,demotion of sparselyreferencedsuperpages,ef-
fective preservation of contiguity without the needfor
compaction,andefficient disk I/O for partially modified
superpages. As shown in Section6, this combination
of techniques is general enough to work efficiently for
a rangeof realisticworkloads,andis believed to besuit-
ablefor deploymentin modern operating systems.

A high-level sketchof thedesigncontainsthefollow-
ing components.Availablephysicalmemory is classified
into contiguous regions of different sizes,and is man-
agedusing a buddy allocator[14]. A multi-list reser-
vation schemeis usedto track partially usedmemory
reservations,andtohelpin choosingreservationsfor pre-
emption, asdescribedin Section4.8. A population map
keepstrackof memory allocations in eachmemory ob-
ject, asdescribedin Section4.9. Thesystemusesthese
datastructuresto implementallocation, preemption,pro-
motionanddemotionpolicies.Finally, it controls exter-
nal memory fragmentationby performing pagereplace-
mentsin acontiguity-awaremanner, asdescribedin Sec-
tion 4.4. The following subsectionselaborateon these
concepts.

4.1 Reservation-basedallocation

Mostoperatingsystemsallocatephysicalmemory onap-
plication demand. Whena virtual memory pageis ac-
cessedby a programandno mapping exists in thepage
table,theOS’spagefaulthandleris invoked.Thehandler
attemptsto locatetheassociatedpagein mainmemory;
if it is not resident,anavailablepageframeis allocated
andthecontentsareeitherzero-filledor fetchedfrom the
paging device. Finally, the appropriatemapping is en-
teredinto thepagetable.

Insteadof allocatingphysicalmemory oneframe at a
time, our systemdeterminesa preferred superpagesize
for theregion encompassingthebasepagewhoseaccess
causedthepagefault. Thechoiceof a sizeis madeac-
cording to a policy describedin Section4.2. At page-
fault time,thesystemobtainsfrom thebuddyallocatora
setof contiguouspage framescorresponding to thecho-
sensuperpagesize. The frame with the sameaddress



alignment asthefaultedpageis usedto fault in thepage,
andamapping is enteredinto thepagetablefor thispage
only. Theentiresetof framesis tentatively reservedfor
potential future useasasuperpage,andaddedto a reser-
vation list. In the event of a pagefault on a pagefor
which a framehasalreadybeenreserved, a mapping is
enteredinto thepagetablefor thebasepage.

4.2 Preferred superpagesizepolicy

Next, we describethepolicy usedto choosethedesired
superpagesizeduring allocation. Sincethis decisionis
usuallymadeearly in a process’s execution, whenit is
hardto predictits futurebehaviour, ourpolicy looksonly
at attributesof the memory objectto which the faulting
pagebelongs. If thechosensizeturnsout to betoolarge,
thenthedecisionwill belateroverriddenby preempting
theinitial reservation. However, if thechosensizeis too
small,thenthedecisioncannot bereverted without relo-
catingpages.For thatreason,thepolicy tendsto choose
themaximum superpagesizethatcanbeeffectively used
in anobject.

For memoryobjectsthatarefixedin size,suchascode
segmentsandmemory-mappedfiles,thedesiredreserva-
tion size is the largest, alignedsuperpage that contains
thefaultingpage, doesnotoverlapwith existingreserva-
tionsor allocatedpages,anddoesnot reachbeyond the
endof theobject.

Dynamically sizedmemory objectssuchasstacksand
heapscan grow one pageat a time. Under the policy
for fixedsizeobjects,they would not beableto usesu-
perpages, becauseeachtime the policy would set the
preferred sizeto onebasepage. Thus a slightly differ-
entpolicy is required. As before, thedesiredsizeis the
largest,alignedsuperpagethatcontainsthefaultingpage
anddoesnotoverlapwith existingreservationsor alloca-
tions. However, therestrictionthat thereservationmust
not reachbeyond theendof theobjectis droppedto al-
low for growth. To avoid wastageof contiguityfor small
objectsthat may never grow large, the size of this su-
perpage is limited to thecurrentsizeof theobject. This
policy thususeslarge reservations only for objectsthat
havealready reachedasufficiently largesize.

4.3 Preempting reservations

When free physical memory becomes scarceor exces-
sively fragmented,the systemcanpreempt frames that
arereserved but not yet used.Whenanallocationis re-
questedandno extentof frameswith thedesiredsizeis
available,thesystemhasto choosebetween(1) refusing
theallocationandthusreservingasmallerextent thande-
sired,or (2) preempting anexisting reservation thathas

enough unallocatedframesto yield anextentof the de-
siredsize.

Our policy is that,whenever possible,thesystempre-
emptsexisting reservationsratherthanrefusing anallo-
cationof thedesiredsize.Whenmore thanonereserva-
tion canyield anextentof the desiredsize,the reserva-
tion is preemptedwhosemostrecentpageallocationoc-
curredleastrecently, among all candidate reservations.
This policy is basedon theobservationthatusefulreser-
vationsareoftenpopulatedquickly, andthatreservations
thathave not experiencedany recent allocationsareless
likely to befully allocatedin thenearfuture.

4.4 Fragmentation control

Allocating physical memory in contiguous extents of
multiple sizesleadsto fragmentationof main memory.
Over time, extentsof large sizesmay becomeincreas-
ingly scarce,thuspreventing the effective useof super-
pages.

To control fragmentation, our buddy allocator per-
forms coalescingof availablememory regions whenever
possible. However, coalescing by itself is only effec-
tive if the systemperiodically reaches a statewhereall
or mostof main memory is available. To control frag-
mentationunderpersistentmemorypressure, the page
replacement daemonis modified to perform contiguity-
aware pagereplacement. Section5.1 discussesthis in
greaterdetail.

4.5 Incr emental promotions

A superpage is createdassoonasany superpage-sized
andalignedextent within a reservation getsfully pop-
ulated. Promotion, therefore, is incremental: if, for in-
stance,pagesof a memory object arefaultedin sequen-
tially, a promotionoccurs to thesmallestsuperpagesize
assoonasthepopulationcountcorrespondsto thatsize.
Then,whenthepopulationcountreachesthenext larger
superpage size, anotherpromotion occurs to the next
size,andsoon.

It is possibleto promoteto thenext sizewhenthepop-
ulationcount reachesacertainfractionof thatsize.How-
ever, before performing thepromotion thesystemneeds
to populatetheentireregion, which couldartificially in-
flate thememory footprint of applications. We promote
only regions thatarefully populatedby theapplication,
sincewe observe that most applications populate their
addressspacedenselyandrelatively earlyin theirexecu-
tion.



4.6 Speculativedemotions

Demotionoccursas a side-effect of pagereplacement.
Whenthepagedaemonselectsa basepagefor eviction
that is part of a superpage, the eviction causesa demo-
tion of thatsuperpage. This demotion is alsoincremen-
tal, sinceit is not necessaryto demote a large superpage
all the way to basepagesjust becauseone of its con-
stituentbasepagesis evicted. Instead,the superpageis
first demotedto thenext smallersuperpagesize,thenthe
processis appliedrecursively for thesmallersuperpage
thatencompassesthevictim page, andsoon. Demotion
is alsonecessarywhenever the protection attributesare
changedonpartof asuperpage.This is requiredbecause
thehardwareprovidesonly asinglesetof protectionbits
for eachsuperpage.

Thesystemmayalsoperiodically demoteactivesuper-
pagesspeculatively in order todetermineif thesuperpage
is still being actively usedin its entirety. Recallthat the
hardwareonly providesa singlereferencebit with each
superpage. Therefore, theoperating systemhasno way
to distinguish a superpagein which all the constituent
basepagesarebeingaccessed,from onein whichonly a
subsetof thebasepagesare.In thelattercase,it wouldbe
desirableto demotethe superpage undermemory pres-
sure,suchthat theunusedbasepages canbediscovered
andevicted.

To addressthis problem, whenthe pagedaemonre-
setsthe referencebit of a superpage’s basepage,andif
thereis memory pressure,thenit recursively demotesthe
superpagethatcontainsthechosenbasepage,with acer-
tain probability � . In our current implementation,� is 1.
Incrementalrepromotions occurwhenall thebasepages
of a demotedsuperpagesarebeingreferenced.

4.7 Pagingout dirty superpages

Whena dirty superpageneeds to bewritten to disk, the
operating systemdoes not possessdirty bit information
for individual basepages.It mustthereforeconsiderall
theconstituentbasepagesdirty, andwrite out thesuper-
pagein its entirety, even though only a few of its base
pagesmayhave actuallybeenmodified. For large, par-
tially dirty superpages,theperformance degradationdue
to thissuperfluousI/O canconsiderablyexceedany ben-
efitsfrom superpages.

To prevent this problem,we demotecleansuperpages
whenever a processattemptsto write into them,andre-
promotelaterif all thebasepagesaredirtied.Thischoice
is evaluatedin Section6.7.

Inferring dirty basepagesusing hashdigests: As an
alternative, we considereda technique that retainsthe
benefitsof superpagesevenwhenthey arepartiallydirty,

while avoiding superfluous I/O. Whena cleanmemory
pageis readfrom disk,acryptographichashdigestof its
contents is computedandrecorded.If apartiallydirty set
of basepagesis promotedtoasuperpage,or if acleansu-
perpagebecomesdirty, thenall its constituent basepages
areconsidereddirty. However, whenthepageis flushed
out, thehashof eachbasepageis recomputedandcom-
paredto determine if it wasactuallymodifiedandmust
bewritten to disk.

A 160-bit SHA-1 hash has a collision probability
of about one in ����� [4], which is much smaller than
the probability of a hardware failure. Hencethis tech-
niquecanbeconsideredsafe.However, preliminary mi-
crobenchmarksusingSHA-1revealsignificant overhead,
upto 15%,ondisk-intensiveapplications.Thepatholog-
ical caseof alargesequentialreadwhentheCPUis satu-
ratedincursaworst-casedegradationof 60%.Therefore,
we did notusethis technique in our implementation.

However, theseoverheadscanbereduced usinga va-
riety of optimizations. First, the hashcomputationcan
be postponed until thereis a partially dirty superpage,
so that fully-clean or fully-dirty superpagesandunpro-
motedbasepagesneednotbehashed. Second, thehash-
ing costcanbeeliminatedfrom thecritical pathby per-
forming it entirely from the idle loop, since the CPU
mayfrequently beidle for disk-intensive workloads. An
evaluation of theseoptimizationsis thesubjectof future
work.

4.8 Multi-list reservation scheme

Reservation lists keeptrack of reserved pageframeex-
tentsthatarenot fully populated. There is onereserva-
tion list for eachpagesizesupported by the hardware,
except for the largest superpagesize. Eachreservation
appears in thelist correspondingto thesizeof thelargest
freeextentthatcanbeobtainedif thereservation is pre-
empted. Becausea reservation hasat leastone of its
framesallocated, the largestextentsit canyield if pre-
emptedareonepagesizesmallerthanits own size. For
instance,on animplementationfor theAlpha processor,
whichsupports4MB, 512KB, 64KB and8KB pages,the
64KB reservation list may containreservations of size
512KB and4MB.

Reservationsin eachlist arekept sortedby the time
of their most recentpageframeallocations. Whenthe
systemdecidesto preemptareservation of agivensize,it
choosesthereservationattheheadof thelist for thatsize.
This satisfiesour policy of preempting theextentwhose
mostrecentallocationoccurredleastrecently among all
reservationsin thatlist.

Preempting a chosenreservation occurs as follows.
Ratherthanbreaking the reservation into basepages,it
is broken to smallerextents. Unpopulatedextents are



transferredto thebuddy allocatorandpartiallypopulated
onesarereinsertedinto theappropriatelists. For exam-
ple, whenpreempting a 512KB reservation taken from
headof the64KB list, thereservation is brokeninto eight
64KBextents.Theoneswith noallocationsarefreedand
the onesthat arepartially populatedare insertedat the
headof the8KB reservation list. Fully populatedextents
arenot reinsertedinto thereservationlists.

When the systemneeds a contiguous region of free
memory, it canobtainit from thebuddy allocatoror by
preempting a reservation. The mechanism is bestde-
scribedwith anexample. Still in thecontext of theAlpha
CPU,supposethatanapplication faultsin a givenpage
for which thereis no reserved frame. Furtherassume
that thepreferredsuperpagesizefor thefaultingpageis
64KB. Thenthesystemfirst asksthebuddyallocatorfor
a 64KB extent. If that fails, it preempts the first reser-
vation in the 64KB reservation list, which should yield
at leastone64KB extent. If the64KB list is empty, the
systemwill try the512KB list. If that list is alsoempty,
thenthe systemhasto resortto basepages:the buddy
allocatoris tried first, andthenthe8KB reservation list
asthelastresource.

4.9 Population map

Population maps keep track of allocatedbasepages
within eachmemoryobject.They servefourdistinctpur-
poses:(1) oneachpagefault, they enabletheOSto map
the virtual addressto a page framethat may alreadybe
reserved for this address;(2) while allocatingcontigu-
ous regions in physical addressspace,they enable the
OSto detectandavoid overlapping regions; (3) they as-
sist in makingpagepromotion decisions;and(4) while
preempting a reservation, they help in identifying unal-
locatedregions.

A population mapneedsto support efficient lookups,
sinceit is queriedoneverypagefault.Weusearadixtree
in which eachlevel correspondsto a pagesize.Theroot
correspondsto the maximum superpagesizesupported
by the hardware, eachsubsequent level corresponds to
the next smallersuperpage size, and the leaves corre-
spondto thebasepages.If thevirtual pagesrepresented
by anodehaveareservedextent of frames,thenthenode
hasa pointerto thereservationandthereservation hasa
backpointer to thenode.

Eachnon-leaf node keepsa count of the number of
superpage-sizedvirtual regions at the next lower level
that have a population of at least one (the somepop
counter), and that are fully populated (the fullpop
counter), respectively. This count rangesfrom 	 through


, where



is the ratio betweenconsecutive superpage
sizes(8 on the Alpha processor).The treeis lazily up-
datedasthe object’s pages arepopulated. The absence

of a child nodeis equivalentto having a child with both
counters zero. Sincecounters refer to superpage-sized
regions,upward propagationof thecounters occursonly
whensomepop transitions between0 and1, or when
fullpop transitionsbetween


���
and



. Figure3

showsonesuchtree.

(somepop, fullpop)

1,0 4,4

3,1

2,1

1,0

Figure 3: A population map. At the base page level, the actual
allocation of pages is shown.

A hashtable is usedto locatepopulation maps. For
eachpopulation map, there is an entry associatinga
memoryobject, page index tuple with the map, where
page index is the offset of the startingpageof the map
within theobject.Thepopulationmapis usedasfollows:

Reserved frame lookup: On a pagefault, the virtual
addressof thefaultingpageis roundeddown to a multi-
ple of thelargestpagesize,convertedto thecorrespond-
ing memoryobject,page index tuple,andhashedto de-
terminethe root of the population map. From the root,
thetreeis traversedto locatethereserved page frame, if
thereis one.

Overlap avoidance: If the above procedureyieldsno
reserved frame, thenwe attemptto make a reservation.
The maximum sizethat doesnot overlap with previous
reservations or allocationsis given by the first node in
thepathfrom therootwhosesomepop counter is zero.

Promotion decisions: After a pagefault is serviced,
a promotion is attemptedat the first nodeon the path
from theroot to thefaultingpagethat is fully populated
and has an associatedreservation. The promotion at-
temptsucceeds only if thefaultingprocesshasthepages
mappedwith uniform protection attributesanddirty bits.

Preemption assistance: When a reservation is pre-
emptedit is broken into smallerchunks that needto be
freedor reinsertedin thereservationlists, depending on
their allocationstatus,asdescribed in Section4.8. The
allocationstatuscorrespondsto thepopulation countsin
thesuperpagemapnodeto whichthereservationrefers.



5 Implementation notes

This sectiondescribes someimplementationspecificis-
suesof our design.While thediscussionof our solution
is necessarilyOS-specific,theissuesaregeneral.

5.1 Contiguity-awarepagedaemon

FreeBSD’s pagedaemon keepsthreelists of pages,each
in approximateLRU (A-LRU) order:active,inactiveand
cache. Pagesin the cachelist arecleanandunmapped
andhencecanbe easily freedunder memory pressure.
Inactive pagesarethosemapped into the addressspace
of someprocess,andhavenotbeenreferencedfor a long
time. Active pagesare thosethat have beenaccessed
recently, but may or may not have their reference bit
set. Under memory pressure, the daemon movesclean
inactive pagesto the cache,pagesout dirty inactive
pages,and also deactivates some unreferencedpages
from theactive list. We madethe following changesto
factor contiguity restorationinto the pagereplacement
policy.

(1)Weconsidercachepagesasavailablefor reservations.
Thebuddyallocator keepsthemcoalescedwith the free
pages,increasingtheavailablecontiguity of thesystem.
Thesecoalescedregions areplacedat thetail of their re-
spective lists, so that subsequent allocations tendto re-
specttheA-LRU order.

The contents of a cachepageareretainedas long as
possible,whether it is in a buddy list or in a reservation.
If a cachepageis referenced, then it is removed from
the buddy list or the reservation; in the latter case,the
reservation is preempted. Thecachepageis reactivated
andits contents arereused.

(2) The pagedaemon is activatednot only on memory
pressure,but alsowhenavailablecontiguity falls low. In
our implementation, the criterion for low contiguity is
thefailuretoallocateacontiguousregionof thepreferred
size.Thegoalof thedaemon is to restorethecontiguity
that would have beennecessaryto servicethe requests
that failed sincethe last time the daemon was woken.
Thedaemon thentraversestheinactive list andmoves to
thecacheonly thosepagesthatcontributeto thisgoal. If
it reachestheendof thelist beforefulfilling its goal,then
it goesto sleepagain.

(3) Sincethe chancesof restoringcontiguity arehigher
if therearemore inactivepagesto choosefrom, all clean
pagesbacked by a file aremoved to the inactive list as
soonas the file is closedby all processes.This differs
from the current behaviour of FreeBSD,wherea page
does not change its statuson file closing or process
termination, and active pages from closed files may

never be deactivated if there is no memory pressure.
In termsof overall performance,our systemthusfinds
it worthwhile to favor the likelihoodof recovering the
contiguity from thesefile-backed pages,than to keep
them for a longer time for the chance that the file is
accessedagain.

Controlling fragmentationcomesata price.Themore
aggressively the systemrecoverscontiguity, the greater
is thepossibilityandtheextent of aperformancepenalty
induced by the modified page daemon, dueto its devi-
ation from A-LRU. Our modified pagedaemonaimsat
balancing this tradeoff. Moreover, by judiciously select-
ing pages for replacement,it attemptsto restoreasmuch
contiguity aspossibleby affecting asfew pagesaspossi-
ble. Section6.5demonstratesthebenefitsof this design.

5.2 Wir ed pageclustering

Memory pagesthatareusedby FreeBSDfor its internal
datastructuresarewired, thatis, markedasnon-pageable
sincethey cannot beevicted. At systemboot time these
pagesareclusteredtogether in physical memory, but as
the kernel allocatesmemory while otherprocessesare
running, they tend to get scattered. Our systemwith
512MB of mainmemory is foundto rapidly reachapoint
wheremost4MB chunks of physicalmemorycontainat
leastonewired page.At this point, contiguity for large
pagesbecomesirrecoverable.

To avoid this fragmentation problem, we identify
pagesthat areaboutto be wired for the kernel’s inter-
naluse.We clusterthemin poolsof contiguousphysical
memory, sothatthey donot fragmentmemory any more
thannecessary.

5.3 Multiple mappings

Two processescanmapa file into different virtual ad-
dresses.If the addressesdiffer by, say, onebasepage,
thenit is impossibleto build superpagesfor that file in
the pagetablesof both processes.At most oneof the
processescanhave alignment thatmatchesthe physical
addressof the pagesconstitutingthe file; only this pro-
cessis capableof usingsuperpages.

Our solution to this problemleverages the fact that
applications mostoftendo not specifyanaddresswhen
mapping afile. Thisgivesthekernel theflexibility to as-
sign a virtual addressfor the mapping in eachprocess.
Our systemthenchoosesaddressesthat arecompatible
with superpageallocation.Whenmapping afile, thesys-
tem usesa virtual address that aligns to the largestsu-
perpagethatis smallerthanthesizeof themapping, thus
retainingtheability to createsuperpagesin eachprocess.



6 Evaluation

This sectionreportsresultsof experimentsthatexercise
the systemon several classesof benchmarksand real
applications. We evaluate the best-casebenefitsof su-
perpagesin situationswhensystemmemory is plentiful.
Then,wedemonstratetheeffectivenessof ourdesign,by
showing how thesebenefitsaresustaineddespitediffer-
entkindsof stresson thesystem.Resultsshow theeffi-
ciency of ourdesignby measuring its overheadin several
pathological cases,andjustify thedesignchoicesin the
previoussectionusingappropriatemeasurements.

6.1 Platform

We implemented our designin the FreeBSD-4.3kernel
as a loadable module, alongwith hooks in the operat-
ing systemto call modulefunctions at specificpoints.
Thesepointsarepagefaults,pageallocationanddeal-
location, the pagedaemon, andat the physical layer of
the VM system(to demotewhenchanging protections
andto keeptrack of dirty/modified bits of superpages).
We were also able to seamlesslyintegrate this module
into thekernel. Theimplementationcomprisesof around
3500linesof C code.

WeusedaCompaqXP-1000machinewith thefollow-
ing characteristics:

� Alpha21264processorat 500MHz;� four pagesizes: 8KB basepages,64KB, 512KB
and4MB superpages;� fully associative TLB with 128entriesfor dataand
128for instructions;� software page tables, with firmware-based TLB
loader;� 512MB RAM;� 64KB dataand64KB instructionL1 caches,virtu-
ally indexed and2-wayassociative;� 4MB unified,direct-mappedexternal L2 cache.

TheAlphafirmwareimplementssuperpagesby means
of page table entry (PTE) replication. The pagetable
storesanentry for every basepage,whether or not it is
part of a superpage. EachPTE contains the translation
informationfor abasepage,alongwith apagesizefield.
In this PTEreplication scheme,thepromotion of a 4MB
region involvesthesettingof thepagesizefield of each
of the512pagetableentriesthatmaptheregion [18].

6.2 Workloads

We usedthe following benchmarksandapplications to
evaluateoursystem.
CINT2000: SPEC CPU2000 integer benchmark
suite[7].

CFP2000: SPECCPU2000floating-point benchmark
suite[7].
Web: The thttpd web server [15] servicing50000 re-
questsselectedfrom anaccesslog of theCSdepartmen-
tal web server at Rice University. Theworking setsize
of this traceis 238MB, while its datasetis 3.6GB.
Image: 90-degreerotation of a800x600-pixel imageus-
ing thepopular open-sourceImageMagick tools[8].
Povray: Raytracingof a simpleimage.
Link er: Link of the FreeBSDkernel with the GNU
linker.
C4: An alpha-betasearchsolver for a 12-ply position
of the connect-4 game, also known as the fhourstones
benchmark.
Tree:A syntheticbenchmarkthatcapturesthebehaviour
of processesthatusedynamic allocation for alargenum-
berof smallobjects,leadingto poor localityof reference.
The benchmark consistsof four operations performed
randomly on a 50000-node red-black tree: 50% of the
operations are lookups, 24% insertions,24% deletions,
and2% traversals. Nodeson the treecontain a pointer
to a 128-byterecord. On insertionsa new recordis allo-
catedandinitialized; on lookups andtraversals,half of
therecordis read.
SP:Thesequentialversionof a scalarpentadiagonalun-
coupled equation systemsolver, from the NAS Parallel
Benchmark suite[1]. The input sizecorrespondsto the
“workstationclass”in NAS’s nomenclature.
FFTW: The FastestFourier Transform in the West [5]
with a 200x200x200matrixasinput.
Matrix: A non-blocked matrix transposition of a
1000x1000 matrix.

6.3 Best-casebenefits due to superpages

This first setof experimentsshows that several classes
of real workloadsyield large benefitswith superpages
whenfreememoryis plentiful andnon-fragmented.Ta-
ble 1 presentsthesebest-casespeedupsobtained when
the benchmarks are given the contiguous memory re-
gionsthey need,sothateveryattemptto allocateregions
of thepreferredsuperpagesize(asdefinedin Section4.2)
succeeds,andreservationsareneverpreempted.

The speedups are computed against the unmodified
systemusing the meanelapsedruntime of three runs
after an initial warm-uprun. For both the CINT2000
and CFP2000entries in the table, the speedups re-
flect, respectively, theimprovementin SPECint2000and
SPECfp2000 (definedby SPECas the geometric mean
of thenormalizedthroughputratios).

Thetablealsopresents thesuperpagerequirementsof
eachof theseapplications (as a snapshotmeasuredat
peakmemory usage),andthepercentagedataTLB miss
reduction achieved with superpages. In mostcasesthe



dataTLB missesarevirtually eliminatedby superpages,
asindicatedby amissreduction closeto 100%. Thecon-
tribution of instruction TLB missesto the total number
of misseswasfound to benegligible in all of thebench-
marks.

Superpageusage Miss
Bench- 8 64 512 4 reduc Speed-
mark KB KB KB MB (%) up

CINT2000 1.112
gzip 204 22 21 42 80.00 1.007
vpr 253 29 27 9 99.96 1.383
gcc 1209 1 17 35 70.79 1.013
mcf 206 7 10 46 99.97 1.676
crafty 147 13 2 0 99.33 1.036
parser 168 5 14 8 99.92 1.078
eon 297 6 0 0 0.00 1.000
perl 340 9 17 34 96.53 1.019
gap 267 8 7 47 99.49 1.017
vortex 280 4 15 17 99.75 1.112
bzip2 196 21 30 42 99.90 1.140
twolf 238 13 7 0 99.87 1.032

CFP2000 1.110
wupw 219 14 6 43 96.77 1.009
swim 226 16 11 46 98.97 1.034
mgrid 282 15 5 13 98.39 1.000
applu 1927 1647 90 5 93.53 1.020
mesa 246 13 8 1 99.14 0.985
galgel 957 172 68 2 99.80 1.289
art 163 4 7 0 99.55 1.122
equake 236 2 19 9 97.56 1.015
facerec 376 8 13 2 98.65 1.062
ammp 237 7 21 7 98.53 1.080
lucas 314 4 36 31 99.90 1.280
fma3d 500 17 27 22 96.77 1.000
sixtr 793 81 29 1 87.50 1.043
apsi 333 5 5 47 99.98 1.827

Web 30623 5 143 1 16.67 1.019
Image 163 1 17 7 75.00 1.228
Povray 136 6 17 14 97.44 1.042
Linker 6317 12 29 7 85.71 1.326
C4 76 2 9 0 95.65 1.360
Tree 207 6 14 1 97.14 1.503
SP 151 103 15 0 99.55 1.193
FFTW 160 5 7 60 99.59 1.549
Matrix 198 12 5 3 99.47 7.546

Table 1: Speedups and superpage requirements when plenty of
memory is available.

Nearlyall the workloadsin the tabledisplaybenefits
due to superpages;someof thesearesubstantial. Out
of our 35 benchmarks, 18 show improvementsover 5%
(speedup of 1.05), and10 show over 25%. Theonly ap-
plication that slows down is mesa,which degradesby
a negligible fraction. Matrix, with a speedup of 7.5, is
closeto the maximum potential benefitsthat canpossi-

bly begainedwith superpages,becauseof its accesspat-
ternthatproducesoneTLB missfor every two memory
accesses.

Several commonplace desktop applications like
Linker (gnuld), gcc, andbzip2 observe significantper-
formanceimprovements. If sufficient contiguousmem-
ory is available,thentheseapplications standto benefit
from a superpagemanagementsystem.In contrast,Web
gainslittle, becausethesystemcannot createenough su-
perpagesin spiteof its large 315MB footprint. This is
becauseWebaccessesa large number of smallfiles,and
thesystemdoesnotattemptto build superpagesthatspan
multiplememoryobjects.Extrapolatingfromtheresults,
a systemwithout suchlimitation (which is technically
feasible,but likely at a high cost in complexity) would
bring Web’s speedupcloserto a moreattractive 15%,if
it achieved a missreduction closeto 100%.

Someapplicationscreateasignificantnumberof large
superpages. FFTW, in particular, standsout with 60
superpagesof size 4MB. The next sectionshows that
FFTW makesgooduseof large superpages,asthereis
almostnospeedup if 4MB pages arenotsupported.

Mesashowsasmallperformancedegradationof 1.5%.
Thiswasdeterminedto benotdueto theoverheadof our
implementation,but becauseour allocatordoesnot dif-
ferentiatezeroed-outpagesfrom otherfreepages.When
the OS allocatesa pagethat needs to be subsequently
zeroedout, it requeststhememory allocatorto preferen-
tially allocateanalreadyzeroed-outpageif possible.Our
implementationof thebuddy allocatorignoresthis hint;
weestimatedthecostof thisomissionbycomparingbase
systemperformancewith and without the zeroed-page
feature. We obtainedanaveragepenaltyof 0.9%,anda
maximum of 1.7%.

A side effect of using superpages is that it sub-
sumespagecoloring [11], a technique thatFreeBSDand
other operating systemsuse to reduce cacheconflicts
in physically-addressedandespeciallyin direct-mapped
caches.By carefully selectingamongfree frameswhen
mapping a page,the OS keepsvirtual-to-physical map-
pings in a way suchthat pagesthat are consecutive in
virtual spacemapto consecutive locations in thecache.
Sincewith superpagesvirtually contiguouspagesmapto
physicallycontiguousframes, they automaticallymapto
consecutivelocationsin aphysically-mappedcache.Our
speedupresultsfactorouttheeffectof page-coloring,be-
causethebenchmarkswererun with enoughfreemem-
ory for the unmodified systemto alwayssucceedin its
pagecoloringattempts.Thus, both the unmodified and
themodifiedsystemeffectively benefitfrom pagecolor-
ing.



6.4 Benefits fr om multiple superpagesizes

We repeatedthe above experiments, but changed the
systemto support only onesuperpage size, for eachof
64KB, 512KB and 4MB, and compared the resulting
performanceagainst our multi-sizeimplementation.Ta-
bles2 and3 respectively present the speedup andTLB
missreductionfor thebenchmarks,excluding thosethat
have thesamespeedup(within 5%) in all four cases.

Benchmark 64KB 512KB 4MB All

CINT2000 1.05 1.09 1.05 1.11
vpr 1.28 1.38 1.13 1.38
mcf 1.24 1.31 1.22 1.68
vortex 1.01 1.07 1.08 1.11
bzip2 1.14 1.12 1.08 1.14

CFP2000 1.02 1.08 1.06 1.12
galgel 1.28 1.28 1.01 1.29
lucas 1.04 1.28 1.24 1.28
apsi 1.04 1.79 1.83 1.83

Image 1.19 1.19 1.16 1.23
Linker 1.16 1.26 1.19 1.32
C4 1.30 1.34 0.98 1.36
SP 1.19 1.17 0.98 1.19
FFTW 1.01 1.00 1.55 1.55
Matrix 3.83 7.17 6.86 7.54

Table 2: Speedups with different superpage sizes.

Theresultsshow thatthebestsuperpage sizedepends
on the application. For instance,it is 64KB for SP,
512KB for vpr, and4MB for FFTW. Thereasonis that
while someapplications only benefitfrom large super-
pages,othersaretoo small to fully populatelarge super-
pages.To uselargesuperpageswith small applications,
thepopulationthresholdfor promotioncouldbelowered,
assuggestedin Section4.5. However, theOSwouldhave
to populateregions thatareonly partiallymappedby the
application. Thiswouldenlargetheapplicationfootprint,
andalsoslightly changethe OS semantics,sincesome
invalid accesseswouldnotbecaught.

The tablesalsodemonstratethat allowing thesystem
to choosebetweenmultiplepagesizesyieldshigherper-
formance,because the systemdynamically selectsthe
bestsizefor every region of memory. An extremecaseis
mcf, for which thepercentage speedup whenthesystem
getstochooseamongseveralsizesmorethandoublesthe
speedupwith any singlesize.

Someapparentanomalies,likedifferentspeedupswith
thesameTLB missreduction (e.g.,Linker)arelikelydue
to the coarsegranularity of the Alpha processor’s TLB
miss counter (512K misses). For short-running bench-
marks,512K missescorrespondsto a two-digit percent-
ageof thetotalnumber of misses.

Benchmark 64KB 512KB 4MB All

CINT2000
vpr 82.49 98.66 45.16 99.96
mcf 55.21 84.18 53.22 99.97
vortex 46.38 92.76 80.86 99.75
bzip2 99.80 99.09 49.54 99.90

CFP2000
galgel 98.51 98.71 0.00 99.80
lucas 12.79 96.98 87.61 99.90
apsi 9.69 98.70 99.98 99.98

Image 50.00 50.00 50.00 75.00
Linker 57.14 85.71 57.14 85.71
C4 95.65 95.65 0.00 95.65
SP 99.11 93.75 0.00 99.55
FFTW 7.41 7.41 99.59 99.59
Matrix 90.43 99.47 99.47 99.47

Table 3: TLB miss reduction percentage with different superpage
sizes.

6.5 Sustainedbenefits in the long term

Theperformancebenefitsof superpagescanbesubstan-
tial, providedcontiguousregionsof physicalmemoryare
available.However, conventional systemscanbesubject
to memory fragmentationeven undermoderatelycom-
plex workloads.For example, we raninstancesof grep,
emacs,netscapeanda kernel compilation on a freshly
booted system;within about15 minutes,we observed
severe fragmentation. The systemhad completelyex-
haustedall contiguousmemory regionslargerthan64KB
thatwerecandidatesfor largersuperpages,eventhough
asmuchas360MB of the512MB werefree.

Our systemseeksto preserve the performance of su-
perpagesover time, so it actively restorescontiguity us-
ing techniquesdescribedin Sections4.4and5.1. Toeval-
uatethesemethods,wefirst fragment thesystemmemory
byrunningawebserverandfeedingit with requestsfrom
thesameaccesslog asbefore. Thefile-backedmemory
pagesaccessedby thewebserverpersistin memory and
reduceavailablecontiguity to aminimum. Moreover, the
accesspatternof thewebserver resultsin aninterleaved
distribution of active, inactive and cachepages,which
increasesfragmentation.

We presenttwo experimentsusingthis webserver.

Sequential execution: After the requests from the
tracehave beenserviced,we run theFFTW benchmark
four timesin sequence. The goal is to seehow quickly
the systemrecoversjust enough contiguousmemory to
build superpagesandperform efficiently.

Figure 4 comparesthe performanceof two contigu-
ity restoration techniques. The cache schemetreatsall
cachedpagesasavailable,andcoalescestheminto the



buddy allocator. The graph depictsno appreciableper-
formanceimprovementsof FFTW over thebasesystem.
We observed thatthesystemis unableto provide evena
single4MB superpagefor FFTW. This is becausemem-
ory is available (47MB in the first run and 290MB in
theothers),but is fragmenteddueto active, inactive and
wiredpages.

The otherscheme,calleddaemon, is our implemen-
tation of contiguity-awarepagereplacementandwired
pageclustering. Thefirst time FFTW runs aftertheweb
server, the pagedaemon is activateddue to contiguity
shortage, andis ableto recover 20 out of the requested
60contiguousregionsof 4MB size.Subsequent runsget
a progressively larger number of 4MB superpages,viz.
35, 38 and40. Thus,FFTW performancereachesnear-
optimum within two runs,i.e.,a speedupof 55%.

0

1

2

1 2 3 4
FFTW runs

S
pe

ed
up

Cache Daemon

time

Best-case speedup

Figure 4: Two techniques for fragmentation control.

The web server closesits files on exit, andour page
daemon treatsthis file memory asinactive, asdescribed
in Section5.1.We now measuretheimpactof thiseffect
in conjunction with the pagedaemon’s drive to restore
contiguity, on thewebserver’s subsequentperformance.
We run the web server againafter FFTW, and replay
the sametrace. We observe only a 1.6% performance
degradationover the basesystem,indicating that the
penaltyon thewebserverperformanceis small.

We further analyze this experimentby monitoring the
availablecontiguity in the systemover time. We define
anempiricalcontiguity metric asfollows. We assign1,
2 or 3 pointsto eachbasepagethatbelongs to a 64KB,
512KB, or 4MB memory region respectively, assuming
thattheregion is contiguous,alignedandfully available.
We compute thesumof theseper-pagepoints,andnor-
malizeit to thecorrespondingvalue if every pagein the
systemwereto befree.Figure5 showsaplot of thiscon-
tiguity metric against experimentaltime. Note that this
metricis unfavorableto thedaemonschemesinceit does
not considerasavailabletheextra contiguity thatcanbe
regainedby moving inactivepagesto thecache.

At thestartof theexperiment,neitherschemehasall
of thesystem’s512MBavailable;in particular, thecache
schemehaslost 5% morecontiguity dueto unclustered
wired pages. For about five minutes, the web server
consumesmemory anddecreasesavailablecontiguity to
zero.Thereafter, thecacheschemerecoversonly8.8%of
the system’s contiguity, which canbeseenin the graph
asshort,transitory burstsbetweenFFTW executions. In
contrast, thedaemonschemerecoversasmuchas42.4%
of thecontiguity, which is consumedby FFTW while it
executes,andreleasedeachtimeit exits. TheFFTWexe-
cutionsthusfinish earlier, at 8.5minutesfor thedaemon
scheme,comparedto 9.8minutesfor thecachescheme.

0

20

40

60

80

0 2 4 6 8 10

A
va

ila
bl

e 
co

nt
ig

ui
ty

 (
%

)

�

Experimental time (minutes)

Cache
Daemon

Figure 5: Contiguity as a function of time.

To estimate the maximum contiguity that can be
potentially gained backafter the FFTW runscomplete,
we run a syntheticapplicationthat usesenough anony-
mousmemory to maximizethenumber of freepagesin
the systemwhen it exits. At this point, the amount of
contiguity lost is 54%in the cachescheme,mostlydue
to scatteredwiredpages.In contrast,thedaemonscheme
in unable to recover 13%of theoriginal contiguity. The
reasonis that the few active and inactive pages that
remain at the end of the experiment are scatteredin
physical memory over as many as 54 4MB chunks.
Sincethe experiment startson a freshlybooted system,
active and inactive pages were physically closeat that
time, occupying only 22 suchchunks. Part of the lost
13% is due to inactive pagesthat are not counted in
the contiguity metric,but canbe recoveredby the page
daemon. Therefore,thereallossin thelong termfor the
daemon schemeis boundedonly by thenumberof active
pages.

Concurrent execution: Thenext experimentrunsthe
webserverconcurrentlywith acontiguity-seeking appli-
cation. Thegoal is to measuretheeffect of thepagere-
placement policy onthewebserverduring asingle,con-



tinuousrun. Weisolatetheeffectof thepagereplacement
policy by disablingsuperpagepromotionsin this experi-
ment.

We warm up the web server footprint by playing
100,000 requestsfrom the trace,and thenmeasurethe
timetakento servicethenext 100,000requests.Wewish
to avoid interferenceof theCPU-intensive FFTW appli-
cation with the web server, so we substituteit with a
dummy application thatonly exercisestheneedfor con-
tiguity. Thisapplicationmaps,touchesandunmaps1MB
of memory, five timesasecond, andforcesthepagedae-
monto recovercontiguity ratherthanjust memory.

The web server keepsits active files open while it
is running, soour pagedaemoncannot indiscriminately
treat this memory as inactive. The web server’s active
memory pagesgetscattered,andonly a limited amount
of contiguity canbe restored without compacting mem-
ory. Over thecourseof theexperiment, thedummy ap-
plicationneedsabout 3000contiguouschunksof 512KB
size. The original pagedaemon only satisfied3.3% of
theserequests,whereasour contiguity-awarepage dae-
monfulfills 29.9%of therequests.This shows how the
change in the replacement policy succeedsin restoring
significantlymore contiguity thanbefore, with negligi-
bleoverheadandessentiallynoperformancepenalty.

Theoverheadof thecontiguity restoration operations
of thepagedaemon is found tobeonly0.8%,andtheweb
serversuffersanadditional 3% of performance degrada-
tion, asa consequenceof the deviation of the page re-
placement policy from A-LRU.

6.6 Adversary applications

This section exercisesthe system on three synthetic
pathological workloads,andconcludeswith a measure-
mentof realisticoverhead.

Incr emental promotion overhead: We synthesized
an adversaryapplication that makes the systempay all
thecostsof incrementalpromotion without gaining any
benefit. It allocatesmemory, accessesonebyte in each
page,and deallocatesthe memory, which renders the
TLB uselesssinceevery translationis usedonly once.
This adversaryshows a slowdown of 8.9%with our im-
plementation, but as much as 7.2% of this overhead
is due to the following hardware-specificreason. PTE
replication, asdescribedin Section6.1,forces eachpage
tableentryto betraversedsix times:oncepereachof the
threeincremental promotions,andoncepereachof the
threeincremental demotions.Theremaining 1.7%of the
overheadis mainlydueto maintenanceof thepopulation
maps.

Sequential access overhead: Accessing pages se-
quentially asin our adversaryis actuallya common be-
haviour, but usuallyeverybyteof eachpageis accessed,
which dilutes the overhead. We testedthe cmp utility,
which comparestwo files by mapping themin memory,
usingtwo identical100MB filesasinput,andobserveda
negligible performancedegradationof lessthan0.1%.

Preemption overhead: To measure the overheadof
preempting reservations, we set up a situation where
there is only 4MB of memory available and contigu-
ous,andruna processthattouchesmemorywith a 4MB
stride. In this situation,thereis a patternof onereser-
vation preemption every seven allocations. Every pre-
emptionsplits a reservation into 8 smallerchunks. One
remainsreserved with the pagethat madethe original
reservation; anotheris takenfor thepagebeingallocated,
and6 arereturnedto thefreelist. We measuredaperfor-
mancedegradationof 1.1%for this process.

Overhead in practice: Finally, we measurethe total
overheadof our implementation in real scenarios.We
usethesamebenchmarksof Section6.2,perform all the
contiguousmemoryallocationand fragmentationman-
agement as before, but factor out the benefitof super-
pagesby simply not promoting them. We preserve the
promotion overheadby writing the new superpagesize
into someunusedportionof the pagetableentries. We
observe performancedegradations of up to 2%, with an
average of about 1%. This shows how our systemonly
imposesnegligible overheadin practice,sothepatholog-
ical situationsdescribedabovearerarelyobserved.

6.7 Dirty superpages

To evaluateour decisionof demotingcleansuperpages
uponwriting, as discussedin Section4.7, we codeda
programthatmapsa 100MB file, readsevery pagethus
triggering superpage promotion, thenwrites into every
512th page,flushesthefile andexits. We compared the
running timeof theprocessbothwith andwithoutdemot-
ing onwriting. As expected, sincetheI/O volumeis 512
timeslarger, theperformancepenalty of not demoting is
huge: a factorof morethan20.

Our designdecisionmay deny the benefitsof super-
pagesto processesthat do not write to all of the base
pagesof a potentialsuperpage. However, according to
our policy, we chooseto pay thatprice in order to keep
thedegradationin pathologicalcaseslow.

6.8 Scalability

If the historical tendencies of decreasingrelative TLB
coverageandincreasingworking setsizescontinue,then



to keepTLB missoverheadlow, support for superpages
muchlargerthan4MB will beneededin thefuture. Some
processorslike the Itanium andthe Sparc64-III provide
128MB andlargersuperpages,andoursuperpagesystem
is designedto scaleto suchsizes.However, architectural
peculiarities mayposesomeobstacles.

Most operations in our implementation are either��� ��
; or

����� �
, where

�
is the number of distinct su-

perpagesizes;or in thecaseof preemptingareservation,������� 
��
, where



is theratiobetweenconsecutivesizes,

which is never morethan8 on modernprocessors.The
exceptions arefour routineswith running time linear in
thesize(in basepages) of thesuperpage that they oper-
ateon. Oneis thepagedaemonthatscanspages;since
it runs asa background process,it is not in the critical
pathof memoryaccesses.The otherthreeroutinesare
promotion, demotion, anddirty/reference bit emulation.
They operateon eachpagetableentryin thesuperpage,
andowe theirunscalability to thehardware-definedPTE
replicationschemedescribedin Section6.1.

Promotions and demotions: Often, under no mem-
ory pressure,pagesareincrementallypromotedearly in
a process’s life and only demotedat program exit. In
suchcase,thecostamortizedover all pagesusedby the
processis

����� �
, which is negligible in all of our bench-

marks.Theonly exception to this is theadversaryexper-
imentof Section6.6,whichpaysa7.2%overheaddueto
incremental promotions anddemotions. However, when
thereis memory pressure, demotions andrepromotions
mayhappenseveraltimesin aprocess’slife (asdescribed
in Sections4.6and4.7). Thecostof suchoperationsmay
become significantfor very large superpages,given the
linearcostof PTEreplication.

Dirty/r eference bit emulation: In many processors,
including theAlpha,dirty andreferencebitsmustbeem-
ulatedby the operating system.This emulation is done
by protecting thepagesothatthefirst write or reference
triggers a softwaretrap.Thetraphandlerregistersin the
OS structuresthat the pageis dirty or referenced, and
resetsthepage protection. For large superpages,setting
andresettingprotection canbe expensive if PTE repli-
cationis required,asit mustbedonefor every basepage.

These problems motivate the need for more
superpage-friendly page table structures, whether
they aredefinedby the hardware or the OS, in order to
scalablysupport very largesuperpages.Clustered page
tablesproposedby Talluri et al. [21] represent onestep
in this direction.

7 Conclusions

This paperprovidesa transparent andeffective solution
to the problem of superpagemanagementin operating
systems. Superpages are physical pagesof large size,
which may be usedto increaseTLB coverage, reduce
TLB misses,andthusimprove applicationperformance.
We describea practicaldesignand demonstratethat it
canbe integratedinto anexisting general-purposeoper-
atingsystem.We evaluatethesystemon a range of real
workloadsandbenchmarks,observe performancebene-
fits of 30% to 60% in several cases,andshow that the
systemis robust evenin pathological cases.Theseben-
efits are sustainedunder complex workload conditions
andmemory pressure,andtheoverheadsaresmall.

Acknowledgments

We wish to thank our shepherdGreg Ganger and
the anonymous refereesfor their helpful comments.
This work was supported in part by NSF grant CCR-
98110603, Texas ATP grant 003604-0150-1999, and
equipmentdonations from CompaqWRL andHP Labs.
JuanNavarrowassupportedin part by a USENIX Stu-
dentResearchGrant.

References

[1] D. Bailey, T. Harris, W. Saphir, R. van der Wijn-
gaart, A. Woo, and M. Yarrow. The NAS Paral-
lel Benchmarks 2.0. ReportNAS-95-020, NASA
AmesResearchCenter, Moffett Field,CA, 1995.

[2] D. W. Clark and J. S. Emer. Performanceof
theVAX-11/780translationbuffer: Simulationand
measurement. ACM TransactionsComputerSys-
tems, 3(1):31–62,Feb. 1985.

[3] Z. Fang, L. Zhang, J. Carter, S. McKee, and
W. Hsieh. Reevaluating online superpagepromo-
tion with hardwaresupport. In Proceedingsof the
7thInternational IEEESymposiumonHigh Perfor-
manceComputer Architecture, Monterrey, Mexico,
Jan.2001.

[4] FIPS180-1. SecureHashStandard. TechnicalRe-
port Publication180-1, FederalInformation Pro-
cessingStandard (FIPS),NationalInstituteof Stan-
dards and Technology, US Department of Com-
merce,WashingtonD.C.,Apr. 1995.

[5] M. Frigo and S. G. Johnson. FFTW: An adap-
tive softwarearchitecture for theFFT. In Proceed-
ingsof the International Conferenceon Acoustics,



Speech, andSignal Processing, volume 3, Seattle,
WA, May 1998.

[6] N. GanapathyandC. Schimmel. Generalpurpose
operatingsystemsupport for multiplepagesizes.In
Proceedingsof theUSENIX1998 Annual Technical
Conference, Berkeley, CA, June1998.

[7] J. L. Henning. SPECCPU2000: MeasuringCPU
performance in the new millennium. IEEE Com-
puter, 33(7):28–35,July2000.

[8] Imagemagick.http://www.imagemagick.org.

[9] G. B. Kandiraju andA. Sivasubramaniam. Char-
acterizingthe d-TLB behavior of SPECCPU2000
benchmarks.In Proceedings of theACM SIGMET-
RICSConferenceonMeasurementandModelingof
ComputerSystems, MarinadelRey, CA, June2002.

[10] G. KaneandJ.Heinrich. MIPSRISCArchitecture.
Prentice-Hall, UpperSaddleRiver, NJ,1992.

[11] R. E. KesslerandM. D. Hill. Pageplacementalgo-
rithms for large real-indexedcaches.ACM Trans-
actionsonComputerSystems, 10(4):338–359, Apr.
1992.

[12] Y. A. Khalidi, M. Talluri, M. N. Nelson, and
D. Williams. Virtual memory support for mul-
tiple page sizes. In Proceedings of the Fourth
IEEEWorkshoponWorkstationOperatingSystems,
Napa,CA, Oct.1993.

[13] J.C. Mogul. Big memoriesonthedesktop.In Pro-
ceedingsof theFourthIEEEWorkshoponWorksta-
tion Operating Systems, Napa,CA, Oct.1993.

[14] J. L. PetersonandT. A. Norman. Buddysystems.
Communicationsof theACM, 20(6):421–431,June
1977.

[15] J. Poskanzer. thttpd – tiny/turbo/throttling HTTP
server. http://www.acme.com/software/thttpd/.

[16] T. H. Romer, W. H. Ohlrich, A. R. Karlin, and
B. Bershad.ReducingTLB andmemoryoverhead
using online superpagepromotion. In Proceed-
ings of the 22nd Annual International Symposium
on ComputerArchitecture, SantaMargherita,Italy,
June1995.

[17] M. Rosenblum, E. Bugnion, S. A. Herrod,
E. Witchel, andA. Gupta. Theimpactof architec-
tural trendson operating systemperformance. In
Proceedings of the 15th Symposiumon Operating
SystemsPrinciples, CopperMountain, CO, Dec.
1995.

[18] R.L. SitesandR.T. Witek. AlphaArchitectureRef-
erenceManual. Digital Press,Boston,MA, 1998.

[19] I. Subramanian, C. Mather, K. Peterson, and

B. Raghunath. Implementation of multiple pa-
gesize support in HP-UX. In Proceedings of
the USENIX 1998 Annual Technical Conference,
Berkeley, CA, June1998.

[20] M. Talluri andM. D. Hill. SurpassingtheTLB per-
formanceof superpageswith lessoperatingsystem
support. In Proceedings of theSixthInternational
Conferenceon Architectural Support for Program-
mingLanguagesandOperatingSystems, SanJose,
CA, Oct.1994.

[21] M. Talluri, M. D. Hill, andY. A. Khalidi. A new
pagetable for 64-bit addressspaces.In Proceed-
ingsof the15thSymposium on Operating Systems
Principles, Copper Mountain,CO,Dec.1995.

[22] M. Talluri, S. Kong,M. D. Hill, andD. A. Patter-
son.Tradeoffs in supporting twopagesizes.In Pro-
ceedings the19thAnnual International Symposium
on ComputerArchitecture, Gold Coast,Australia,
May 1992.

[23] R. Uhlig, D. Nagle, T. Stanley, T. Mudge,
S. Sechrest,andR. Brown. Designtradeoffs for
software-managedTLBs. ACM Transactions on
ComputerSystems, 12(3):175–205,Aug. 1994.

[24] D. A. Wood, S. J. Eggers, G. Gibson,M. D. Hill,
J. M. Pendleton, S. A. Ritchie, G. Taylor, R. H.
Katz, and D. A. Patterson. An in-cacheaddress
translationmechanism. In Proceedings of the13th
Annual International Symposiumon ComputerAr-
chitecture, Tokyo, Japan,1986. ACM.


