
The Multikernel: A new OS architecture for scalable multicore systems

Andrew Baumann∗, Paul Barham†, Pierre-Evariste Dagand‡, Tim Harris†, Rebecca Isaacs†,
Simon Peter∗, Timothy Roscoe∗, Adrian Schüpbach∗, and Akhilesh Singhania∗

∗Systems Group, ETH Zurich
†Microsoft Research, Cambridge ‡ENS Cachan Bretagne

Abstract
Commodity computer systems contain more and more
processor cores and exhibit increasingly diverse archi-
tectural tradeoffs, including memory hierarchies, inter-
connects, instruction sets and variants, and IO configu-
rations. Previous high-performance computing systems
have scaled in specific cases, but the dynamic nature of
modern client and server workloads, coupled with the
impossibility of statically optimizing an OS for all work-
loads and hardware variants pose serious challenges for
operating system structures.

We argue that the challenge of future multicore hard-
ware is best met by embracing the networked nature of
the machine, rethinking OS architecture using ideas from
distributed systems. We investigate a new OS structure,
the multikernel, that treats the machine as a network of
independent cores, assumes no inter-core sharing at the
lowest level, and moves traditional OS functionality to
a distributed system of processes that communicate via
message-passing.

We have implemented a multikernel OS to show that
the approach is promising, and we describe how tradi-
tional scalability problems for operating systems (such
as memory management) can be effectively recast using
messages and can exploit insights from distributed sys-
tems and networking. An evaluation of our prototype on
multicore systems shows that, even on present-day ma-
chines, the performance of a multikernel is comparable
with a conventional OS, and can scale better to support
future hardware.

1 Introduction

Computer hardware is changing and diversifying faster
than system software. A diverse mix of cores, caches, in-
terconnect links, IO devices and accelerators, combined
with increasing core counts, leads to substantial scalabil-
ity and correctness challenges for OS designers.

x86

Async messages

App

x64 ARM GPU

App App

OS node OS node OS node OS node

State
replica

State
replica

State
replica

State
replica

App

Agreement
algorithms

Interconnect

Heterogeneous
cores

Arch-specific
code

Figure 1: The multikernel model.

Such hardware, while in some regards similar to ear-
lier parallel systems, is new in the general-purpose com-
puting domain. We increasingly find multicore systems
in a variety of environments ranging from personal com-
puting platforms to data centers, with workloads that are
less predictable, and often more OS-intensive, than tradi-
tional high-performance computing applications. It is no
longer acceptable (or useful) to tune a general-purpose
OS design for a particular hardware model: the deployed
hardware varies wildly, and optimizations become obso-
lete after a few years when new hardware arrives.

Moreover, these optimizations involve tradeoffs spe-
cific to hardware parameters such as the cache hierarchy,
the memory consistency model, and relative costs of lo-
cal and remote cache access, and so are not portable be-
tween different hardware types. Often, they are not even
applicable to future generations of the same architecture.
Typically, because of these difficulties, a scalability prob-
lem must affect a substantial group of users before it will
receive developer attention.

We attribute these engineering difficulties to the ba-
sic structure of a shared-memory kernel with data struc-
tures protected by locks, and in this paper we argue for
rethinking the structure of the OS as a distributed sys-
tem of functional units communicating via explicit mes-

1

sages. We identify three design principles: (1) make all
inter-core communication explicit, (2) make OS structure
hardware-neutral, and (3) view state as replicated instead
of shared.

The model we develop, called a multikernel (Figure 1),
is not only a better match to the underlying hardware
(which is networked, heterogeneous, and dynamic), but
allows us to apply insights from distributed systems to
the problems of scale, adaptivity, and diversity in operat-
ing systems for future hardware.

Even on present systems with efficient cache-coherent
shared memory, building an OS using message-based
rather than shared-data communication offers tangible
benefits: instead of sequentially manipulating shared
data structures, which is limited by the latency of re-
mote data access, the ability to pipeline and batch mes-
sages encoding remote operations allows a single core
to achieve greater throughput and reduces interconnect
utilization. Furthermore, the concept naturally accom-
modates heterogeneous hardware.

The contributions of this work are as follows:

• We introduce the multikernel model and the design
principles of explicit communication, hardware-
neutral structure, and state replication.

• We present a multikernel, Barrelfish, which ex-
plores the implications of applying the model to a
concrete OS implementation.

• We show through measurement that Barrelfish sat-
isfies our goals of scalability and adaptability to
hardware characteristics, while providing compet-
itive performance on contemporary hardware.

In the next section, we survey trends in hardware which
further motivate our rethinking of OS structure. In Sec-
tion 3, we introduce the multikernel model, describe its
principles, and elaborate on our goals and success crite-
ria. We describe Barrelfish, our multikernel implemen-
tation, in Section 4. Section 5 presents an evaluation
of Barrelfish on current hardware based on how well it
meets our criteria. We cover related and future work in
Sections 6 and 7, and conclude in Section 8.

2 Motivations

Most computers built today have multicore processors,
and future core counts will increase [12]. However, com-
mercial multiprocessor servers already scale to hundreds
of processors with a single OS image, and handle ter-
abytes of RAM and multiple 10Gb network connections.
Do we need new OS techniques for future multicore
hardware, or do commodity operating systems simply
need to exploit techniques already in use in larger multi-
processor systems?

In this section, we argue that the challenges facing a
general-purpose operating system on future commodity
hardware are different from those associated with tra-
ditional ccNUMA and SMP machines used for high-
performance computing. In a previous paper [8] we ar-
gued that single computers increasingly resemble net-
worked systems, and should be programmed as such.
We rehearse that argument here, but also lay out addi-
tional scalability challenges for general-purpose system
software.

2.1 Systems are increasingly diverse

A general-purpose OS today must perform well on an
increasingly diverse range of system designs, each with
different performance characteristics [60]. This means
that, unlike large systems for high-performance comput-
ing, such an OS cannot be optimized at design or im-
plementation time for any particular hardware configura-
tion.

To take one specific example: Dice and Shavit show
how a reader-writer lock can be built to exploit the
shared, banked L2 cache on the Sun Niagara proces-
sor [40], using concurrent writes to the same cache line
to track the presence of readers [20]. On Niagara this is
highly efficient: the line remains in the L2 cache. On a
traditional multiprocessor, it is highly inefficient: the line
ping-pongs between the readers’ caches.

This illustrates a general problem: any OS design tied
to a particular synchronization scheme (and data lay-
out policy) cannot exploit features of different hardware.
Current OS designs optimize for the common hardware
case; this becomes less and less efficient as hardware be-
comes more diverse. Worse, when hardware vendors in-
troduce a design that offers a new opportunity for op-
timization, or creates a new bottleneck for existing de-
signs, adapting the OS to the new environment can be
prohibitively difficult.

Even so, operating systems are forced to adopt in-
creasingly complex optimizations [27, 46, 51, 52, 57] in
order to make efficient use of modern hardware. The re-
cent scalability improvements to Windows7 to remove
the dispatcher lock touched 6000 lines of code in 58
files and have been described as “heroic” [58]. The
Linux read-copy update implementation required numer-
ous iterations due to feature interaction [50]. Backport-
ing receive-side-scaling support to Windows Server 2003
caused serious problems with multiple other network
subsystems including firewalls, connection-sharing and
even Exchange servers1.

1See Microsoft Knowledge Base articles 927168, 927695 and
948496.

2

L3

RAMRAM

L1

L2

CPU

L2

CPU

L1

L2

CPU

L1

L2

CPU

L1
PCIe

PCIe 7531

62 40

HyperTransport links

Figure 2: Node layout of an 8×4-core AMD system

2.2 Cores are increasingly diverse

Diversity is not merely a challenge across the range of
commodity machines. Within a single machine, cores
can vary, and the trend is toward a mix of different cores.
Some will have the same instruction set architecture
(ISA) but different performance characteristics [34, 59],
since a processor with large cores will be inefficient for
readily parallelized programs, but one using only small
cores will perform poorly on the sequential parts of a
program [31, 42]. Other cores have different ISAs for
specialized functions [29], and many peripherals (GPUs,
network interfaces, and other, often FPGA-based, spe-
cialized processors) are increasingly programmable.

Current OS designs draw a distinction between
general-purpose cores, which are assumed to be homo-
geneous and run a single, shared instance of a kernel,
and peripheral devices accessed through a narrow driver
interface. However, we are not the only researchers to
see an increasing need for OSes to manage the software
running on such cores much as they manage CPUs to-
day [55]. Moreover, core heterogeneity means cores can
no longer share a single OS kernel instance, either be-
cause the performance tradeoffs vary, or because the ISA
is simply different.

2.3 The interconnect matters

Even for contemporary cache-coherent multiprocessors,
message-passing hardware has replaced the single shared
interconnect [18, 33] for scalability reasons. Hardware
thus resembles a message-passing network, as in the
interconnect topology of the commodity PC server in
Figure 2. While on most current hardware the cache-
coherence protocol between CPUs ensures that the OS
can continue to safely assume a single shared mem-
ory, networking problems like routing and congestion
are well-known concerns on large-scale multiprocessors,
and are now issues in commodity intra-machine intercon-
nects [18]. Future hardware will comprise fewer chips
but exhibit network effects inside the chip, such as with
ring [38, 61] and mesh networks [68, 70]. The impli-
cation is that system software will have to adapt to the
inter-core topology, which in turn will differ between ma-

 0

 2

 4

 6

 8

 10

 12

 2 4 6 8 10 12 14 16

La
te

nc
y

(c
yc

le
s

×
 1

00
0)

Cores

SHM8
SHM4
SHM2
SHM1
MSG8
MSG1
Server

Figure 3: Comparison of the cost of updating shared state
using shared memory and message passing.

chines and become substantially more important for per-
formance than at present.

2.4 Messages cost less than shared memory

In 1978 Lauer and Needham argued that message-
passing and shared-memory operating systems are duals,
and the choice of one model over another depends on
the machine architecture on which the OS is built [43].
Of late, shared-memory systems have been the best fit
for PC hardware in terms of both performance and good
software engineering, but this trend is reversing. We can
see evidence of this by an experiment that compares the
costs of updating a data structure using shared memory
with the costs using message passing. The graph in Fig-
ure 3 plots latency against number of cores for updates of
various sizes on the 4×4-core AMD system (described in
Section 4.1).

In the shared memory case, threads pinned to each
core directly update the same small set of memory loca-
tions (without locking) and the cache-coherence mech-
anism migrates data between caches as necessary. The
curves labeled SHM1–8 show the latency per operation
(in cycles) for updates that directly modify 1, 2, 4 and 8
shared cache lines respectively. The costs grow approxi-
mately linearly with the number of threads and the num-
ber of modified cache lines. Although a single core can
perform the update operation in under 30 cycles, when 16
cores are modifying the same data it takes almost 12,000
extra cycles to perform each update. All of these extra
cycles are spent with the core stalled on cache misses
and therefore unable to do useful work while waiting for
an update to occur.

In the case of message passing, client threads issue a
lightweight remote procedure call [10], (which we as-
sume fits in a 64-byte cache line), to a single server

3

process that performs the update on their behalf. The
curves labeled MSG1 and MSG8, show the cost of this
synchronous RPC to the dedicated server thread. As ex-
pected, the cost varies little with the number of modi-
fied cache lines since they remain in the server’s local
cache. Because each request is likely to experience some
queuing delay at the server proportional to the number
of clients, the elapsed time per operation grows linearly
with the number of client threads. Despite this, for up-
dates of four or more cache lines, the RPC latency is
lower than shared memory access (SHM4 vs. MSG8).
Furthermore, with an asynchronous or pipelined RPC
implementation, the client processors can avoid stalling
on cache misses and are free to perform other operations.

The final curve, labeled Server, shows time spent per-
forming each update operation as measured at the server
end of the RPC channel. Since it excludes queuing delay,
this cost is largely independent of the number of threads
(and in fact decreases initially once there are enough
outstanding client requests to keep the server 100% uti-
lized). The cache efficiency of the single server is such
that it can perform twice as many updates per second
as all 16 shared-memory threads combined. The per-
operation cost is dominated by message send and receive,
and since these costs are symmetric at the client end, we
infer that the difference between the Server and MSGn
lines represents the additional cycles that would be avail-
able to the client for useful work if it were to use asyn-
chronous messaging.

This example shows scalability issues for cache-
coherent shared memory on even a small number of
cores. Although current OSes have point-solutions for
this problem, which work on specific platforms or soft-
ware systems, we believe the inherent lack of scalabil-
ity of the shared memory model, combined with the rate
of innovation we see in hardware, will create increas-
ingly intractable software engineering problems for OS
kernels.

2.5 Cache coherence is not a panacea

As the number of cores and the subsequent complexity of
the interconnect grows, hardware cache-coherence pro-
tocols will become increasingly expensive. As a result,
it is a distinct possibility that future operating systems
will have to handle non-coherent memory [12,49,69], or
will be able to realize substantial performance gains by
bypassing the cache-coherence protocol [70].

It is already the case that programmable peripher-
als like NICs and GPUs do not maintain cache coher-
ence with CPUs. Furthermore, many multicore proces-
sors have already demonstrated the use of non-coherent
shared memory [15,26,68], and Mattson et al. [49] argue

that the overhead of cache coherence restricts the ability
to scale up to even 80 cores.

2.6 Messages are getting easier

There are legitimate software engineering issues asso-
ciated with message-based software systems, and one
might therefore question the wisdom of constructing
a multiprocessor operating system based on a “shared
nothing” model as we propose. There are two princi-
pal concerns, the first to do with not being able to access
shared data, and the second to do with the event-driven
programming style that results from asynchronous mes-
saging.

However, the convenience of shared data is some-
what superficial. There are correctness and perfor-
mance pitfalls when using shared data structures, and
in scalable shared-memory programs (particularly high-
performance scientific computing applications), expert
developers are very careful about details such as lock
granularity and how fields are laid out within structures.
By fine-tuning code at a low level, one can minimize the
cache lines needed to hold the shared data and reduce
contention for cache line ownership. This reduces in-
terconnect bandwidth and the number of processor stalls
incurred when cache contents are stale.

The same kind of expertise is also applied to make
commodity operating systems more scalable. As we
have shown above, this leads to a challenge in evolving
the system as tradeoffs change, because the knowledge
required for effective sharing of a particular data struc-
ture is encoded implicitly in its implementation. Note
that this means programmers must think carefully about
a shared-memory program in terms of messages sent by
the cache-coherence protocol in response to loads and
stores to data locations.

The second concern with message passing is the re-
sultant “stack ripping” and obfuscation of control flow
due to the event-driven nature of such programs. How-
ever, traditional monolithic kernels are essentially event-
driven systems, even on multiprocessors. OS develop-
ers are perhaps more accustomed to thinking in terms
of state machines and message handlers than other pro-
grammers.

Finally, we note that a message-passing, event-driven
programming model is also the norm for many other
programming domains, such as graphical user inter-
face programming, some types of network server, and
large-scale computation on clusters (where it has com-
pletely replaced the “distributed shared virtual memory”
paradigm). This has meant that the programmability of
message-passing or event-driven systems is an active re-
search area with promising results that seem a natural
fit for the multikernel model, such as the Tame/Tamer

4

Figure 4: Spectrum of sharing and locking disciplines.

C++ libraries [41] and the X10 parallel programming
language [16]. As the need for multicore programming
environments at the user level becomes more pressing,
we expect tools like these to support a message-passing
abstraction will become widespread.

2.7 Discussion
The architecture of future computers is far from clear but
two trends are evident: rising core counts and increasing
hardware diversity, both between cores within a machine,
and between systems with varying interconnect topolo-
gies and performance tradeoffs.

This upheaval in hardware has important conse-
quences for a monolithic OS that shares data structures
across cores. These systems perform a delicate balancing
act between processor cache size, the likely contention
and latency to access main memory, and the complex-
ity and overheads of the cache-coherence protocol. The
irony is that hardware is now changing faster than soft-
ware, and the effort required to evolve such operating
systems to perform well on new hardware is becoming
prohibitive.

Increasing system and interconnect diversity, as well
as core heterogeneity, will prevent developers from opti-
mizing shared memory structures at a source-code level.
Sun Niagara and Intel Nehalem or AMD Opteron sys-
tems, for example, already require completely differ-
ent optimizations, and future system software will have
to adapt its communication patterns and mechanisms at
runtime to the collection of hardware at hand. It seems
likely that future general-purpose systems will have lim-
ited support for hardware cache coherence, or drop it en-
tirely in favor of a message-passing model. An OS that
can exploit native message-passing would be the natural
fit for such a design.

We believe that now is the time to reconsider how the
OS should be restructured to not merely cope with the
next generation of hardware, but efficiently exploit it.
Furthermore, rather than evolving an inherently shared-
memory model of OS structure to deal with complex
tradeoffs and limited sharing, we take the opposite ap-
proach: design and reason about the OS as a distributed,
non-shared system, and then employ sharing to optimize
the model where appropriate.

Figure 4 depicts a spectrum of sharing and locking
disciplines. Traditional operating systems, such as Win-
dows and variants of Unix, have evolved from designs

at the far left of the continuum towards finer-grained
locking and more replication. These changes have been
driven by hardware developments that exposed scalabil-
ity bottlenecks, particularly the adoption of multiple pro-
cessors in commodity PCs. Mainstream OSes are cur-
rently moving towards the center, where several “hot”
data structures are partitioned or replicated across cores.
Research systems take this even further with mechanisms
like clustered objects that improve the locality of parti-
tioned data [24]. In contrast, we propose an OS archi-
tecture positioned at the extreme right of the spectrum,
where all state is replicated by default and consistency is
maintained using agreement protocols.

3 The multikernel model

In this section we present our OS architecture for het-
erogeneous multicore machines, which we call the mul-
tikernel model. In a nutshell, we structure the OS as a
distributed system of cores that communicate using mes-
sages and share no memory (Figure 1). The multikernel
model is guided by three design principles:

1. Make all inter-core communication explicit.

2. Make OS structure hardware-neutral.

3. View state as replicated instead of shared.

These principles allow the OS to benefit from the
distributed systems approach to gain improved per-
formance, natural support for hardware heterogeneity,
greater modularity, and the ability to reuse algorithms
developed for distributed systems.

After discussing the principles in detail below, in Sec-
tion 4 we explore the implications of these principles by
describing the implementation of Barrelfish, a new oper-
ating system based on the multikernel model.

3.1 Make inter-core communication ex-
plicit

Within a multikernel OS, all inter-core communication
is performed using explicit messages. A corollary is that
no memory is shared between the code running on each
core, except for that used for messaging channels. As
we have seen, using messages to access or update state
rapidly becomes more efficient than shared-memory ac-
cess as the number of cache-lines involved increases. We
can expect such effects to become more pronounced in
the future. Note that this does not preclude applications
sharing memory between cores (see Section 4.8), only
that the OS design itself does not rely on it.

Explicit communication patterns facilitate reasoning
about the use of the system interconnect. In contrast

5

to implicit communication (such as distributed shared
memory, or the messages used for cache coherence), the
knowledge of what parts of shared state are accessed
when and by who is exposed. It is, of course, established
practice in OS kernels to design point-solution data struc-
tures that can be updated using only one or two cache
misses on particular architectures, but it is hard to evolve
such operations as hardware changes, and such optimiza-
tions ignore the wider picture of larger state updates in
the OS involving multiple structures.

We have previously argued that as the machine in-
creasingly resembles a network, the OS will inevitably
behave as a distributed system [8]. Explicit communi-
cation allows the OS to deploy well-known networking
optimizations to make more efficient use of the intercon-
nect, such as pipelining (having a number of requests in
flight at once), and batching (sending a number of re-
quests in one message, or processing a number of mes-
sages together). In Section 5.2 we show the benefit of
such techniques in the case of distributed capability man-
agement.

This approach also enables the OS to provide isolation
and resource management on heterogeneous cores, or to
schedule jobs effectively on arbitrary inter-core topolo-
gies by placing tasks with reference to communication
patterns and network effects. Furthermore, the message
abstraction is a basic requirement for spanning cores
which are not cache-coherent, or do not even share mem-
ory.

Message passing allows operations that might require
communication to be split-phase, by which we mean that
the operation sends a request and immediately continues,
with the expectation that a reply will arrive at some time
in the future. When requests and responses are decou-
pled, the core issuing the request can do useful work, or
sleep to save power, while waiting for the reply. A com-
mon, concrete example is remote cache invalidations. In
a highly concurrent scenario, provided that completing
the invalidation is not required for correctness, it can be
more important not to waste time waiting for the opera-
tion to finish than to perform it with the smallest possible
latency.

Finally, a system based on explicit communication is
amenable to human or automated analysis. The struc-
ture of a message-passing system is naturally modular,
because components communicate only through well-
defined interfaces. Consequently it can be evolved and
refined more easily [23] and made robust to faults [30].
Indeed, a substantial theoretical foundation exists for rea-
soning about the high-level structure and performance of
a system with explicit communication between concur-
rent tasks, ranging from process calculi such as Hoare’s
communicating sequential processes and the π-calculus,

to the use of queuing theory to analyze the performance
of complex networks

3.2 Make OS structure hardware-neutral
A multikernel separates the OS structure as much as pos-
sible from the hardware. This means that there are just
two aspects of the OS as a whole that are targeted at
specific machine architectures – the messaging transport
mechanisms, and the interface to hardware (CPUs and
devices). This has several important potential benefits.

Firstly, adapting the OS to run on hardware with new
performance characteristics will not require extensive,
cross-cutting changes to the code base (as was the case
with recent scalability enhancements to Linux and Win-
dows). This will become increasingly important as de-
ployed systems become more diverse.

In particular, experience has shown that the perfor-
mance of an inter-process communication mechanism is
crucially dependent on hardware-specific optimizations
(we describe those used in Barrelfish in Section 4.6).
Hardware-independence in a multikernel means that we
can isolate the distributed communication algorithms
from hardware implementation details.

We envision a number of different messaging imple-
mentations (for example, a user-level RPC protocol using
shared memory, or a hardware-based channel to a pro-
grammable peripheral). As we saw in Section 2.5, hard-
ware platforms exist today without cache coherence, and
even without shared memory, and are likely to become
more widespread. Once the message transport is opti-
mized, we can implement efficient message-based algo-
rithms independently of the hardware details or memory
layout.

A final advantage is to enable late binding of both the
protocol implementation and message transport. For ex-
ample, different transports may be used to cores on IO
links, or the implementation may be fitted to the ob-
served workload by adjusting queue lengths or polling
frequency. In Section 5.1 we show how a topology-aware
multicast message protocol can outperform highly opti-
mized TLB shootdown mechanisms on commodity oper-
ating systems.

3.3 View state as replicated
Operating systems maintain state, some of which, such
as the Windows dispatcher database or Linux scheduler
queues, must be accessible on multiple processors. Tra-
ditionally that state exists as shared data structures pro-
tected by locks, however, in a multikernel, explicit com-
munication between cores that share no memory leads
naturally to a model of global OS state replicated across
cores.

6

Replication is a well-known technique for OS scala-
bility [4, 24], but is generally employed as an optimiza-
tion to an otherwise shared-memory kernel design. In
contrast, any potentially shared state in a multikernel is
accessed and updated as if it were a local replica. In
general, the state is replicated as much as is useful, and
consistency is maintained by exchanging messages. De-
pending on the consistency semantics required, updates
can therefore be long-running operations to coordinate
replicas, and so are exposed in the API as non-blocking
and split-phase. We provide examples of different update
semantics in Section 4.

Replicating data structures can improve system scala-
bility by reducing load on the system interconnect, con-
tention for memory, and overhead for synchronization.
Bringing data nearer to the cores that process it will re-
sult in lowered access latencies.

Replication is required to support domains that do not
share memory, whether future general-purpose designs
or present-day programmable peripherals, and is inher-
ent in the idea of specializing data structures for partic-
ular core designs. Making replication of state intrinsic
to the multikernel design makes it easier to preserve OS
structure and algorithms as underlying hardware evolves.

Furthermore, replication is a useful framework within
which to support changes to the set of running cores in an
OS, either when hotplugging processors, or when shut-
ting down hardware subsystems to save power. We can
apply standard results from the distributed systems liter-
ature to maintaining the consistency of OS state across
such changes.

Finally, a potentially important optimization of the
multikernel model (which we do not pursue in this paper)
is to privately share a replica of system state between a
group of closely-coupled cores or hardware threads, pro-
tected by a shared-memory synchronization technique
like spinlocks. In this way we can introduce (limited)
sharing behind the interface as an optimization of repli-
cation.

3.4 Applying the model

Like all models, the multikernel, while theoretically el-
egant, is an idealist position: no state is shared and the
OS acts like a fully distributed system. This has several
implications for a real OS.

We discussed previously (in Section 2.6) the soft-
ware engineering concerns of message-passing systems
in general. Within the operating system kernel, which
typically consists of a smaller amount of code written by
expert programmers, software development challenges
are more easily managed. However, the drawback of a
idealist message-passing abstraction here is that certain
platform-specific performance optimizations may be sac-

rificed, such as making use of a shared L2 cache between
cores.

The performance and availability benefits of replica-
tion are achieved at the cost of ensuring replica consis-
tency. Some operations will inevitably experience longer
latencies than others, and the extent of this penalty will
depend on the workload, the data volumes and the con-
sistency model being applied. Not only that, the model
supports multiple implementations of the agreement pro-
tocols used to maintain consistency. This increases the
burden on the developer who must understand the con-
sistency requirements for the data, but on the other hand,
can also precisely control the degree of consistency. For
example, a global flush of the TLB on each CPU is order-
insensitive and can be achieved by issuing a single multi-
cast request, whereas other operations may require more
elaborate agreement protocols.

From an OS research perspective, a legitimate ques-
tion is to what extent a real implementation can adhere
to the model, and the consequent effect on system per-
formance and scalability. To address this, we have im-
plemented Barrelfish, a substantial prototype operating
system structured according to the multikernel model.

Specifically, the goals for Barrelfish are that it:

• gives comparable performance to existing commod-
ity operating systems on current multicore hard-
ware;

• demonstrates evidence of scalability to large num-
bers of cores, particularly under workloads that
stress global OS data structures;

• can be re-targeted to different hardware, or make
use of a different mechanism for sharing, without
refactoring;

• can exploit the message-passing abstraction to
achieve good performance by pipelining and batch-
ing messages;

• can exploit the modularity of the OS to place OS
functionality according to the hardware topology or
load.

In the next section we describe Barrelfish, and in Section
5 we explore the extent to which it achieves these goals.

4 Implementation

While Barrelfish is a point in the multikernel design
space, it is not the only way to build a multikernel. In
this section we describe our implementation, and note
which choices in the design are derived from the model
and which are motivated for other reasons, such as local
performance, ease of engineering, policy freedom, etc. –

7

Figure 5: Barrelfish structure

we have liberally borrowed ideas from many other oper-
ating systems.

4.1 Test platforms

Barrelfish currently runs on x86-64-based multiproces-
sors (an ARM port is in progress). In the rest of this pa-
per, reported performance figures refer to the following
systems:

The 2×4-core Intel system has an Intel s5000XVN
motherboard with 2 quad-core 2.66GHz Xeon X5355
processors and a single external memory controller. Each
processor package contains 2 dies, each with 2 cores and
a shared 4MB L2 cache. Both processors are connected
to the memory controller by a shared front-side bus, how-
ever the memory controller implements a snoop filter to
reduce coherence traffic crossing the bus.

The 2×2-core AMD system has a Tyan Thunder
n6650W board with 2 dual-core 2.8GHz AMD Opteron
2220 processors, each with a local memory controller
and connected by 2 HyperTransport links. Each core has
its own 1MB L2 cache.

The 4×4-core AMD system has a Supermicro H8QM3-
2 board with 4 quad-core 2.5GHz AMD Opteron 8380
processors connected in a square topology by four Hy-
perTransport links. Each core has a private 512kB L2
cache, and each processor has a 6MB L3 cache shared
by all 4 cores.

The 8×4-core AMD system has a Tyan Thunder S4985
board with M4985 quad CPU daughtercard and 8 quad-
core 2GHz AMD Opteron 8350 processors with the in-
terconnect in Figure 2. Each core has a private 512kB L2
cache, and each processor has a 2MB L3 cache shared by
all 4 cores.

4.2 System structure

The multikernel model calls for multiple independent OS
instances communicating via explicit messages. In Bar-
relfish, we factor the OS instance on each core into a
privileged-mode CPU driver and a distinguished user-
mode monitor process, as in Figure 5 (we discuss this
design choice below). CPU drivers are purely local

to a core, and all inter-core coordination is performed
by monitors. The distributed system of monitors and
their associated CPU drivers encapsulate the functional-
ity found in a typical monolithic microkernel: schedul-
ing, communication, and low-level resource allocation.

The rest of Barrelfish consists of device drivers and
system services (such as network stacks, memory allo-
cators, etc.), which run in user-level processes as in a
microkernel. Device interrupts are routed in hardware to
the appropriate core, demultiplexed by that core’s CPU
driver, and delivered to the driver process as a message.

4.3 CPU drivers
The CPU driver enforces protection, performs authoriza-
tion, time-slices processes, and mediates access to the
core and its associated hardware (MMU, APIC, etc.).
Since it shares no state with other cores, the CPU driver
can be completely event-driven, single-threaded, and
nonpreemptable. It serially processes events in the form
of traps from user processes or interrupts from devices or
other cores. This means in turn that it is easier to write
and debug than a conventional kernel, and is small2 en-
abling its text and data to be located in core-local mem-
ory.

As with an exokernel [22], a CPU driver abstracts very
little but performs dispatch and fast local messaging be-
tween processes on the core. It also delivers hardware
interrupts to user-space drivers, and locally time-slices
user-space processes. The CPU driver is invoked via
standard system call instructions with a cost comparable
to Linux on the same hardware.

The current CPU driver in Barrelfish is heavily spe-
cialized for the x86-64 architecture. In the future, we
expect CPU drivers for other processors to be simi-
larly architecture-specific, including data structure lay-
out, whereas the monitor source code is almost entirely
processor-agnostic.

The CPU driver implements a lightweight, asyn-
chronous (split-phase) same-core interprocess commu-
nication facility, which delivers a fixed-size message to
a process and if necessary unblocks it. More complex
communication channels are built over this using shared
memory. As an optimization for latency-sensitive opera-
tions, we also provide an alternative, synchronous oper-
ation akin to LRPC [9] or to L4 IPC [44].

Table 1 shows the one-way (user program to user pro-
gram) performance of this primitive. On the 2×2-core
AMD system, L4 performs a raw IPC in about 420 cy-
cles. Since the Barrelfish figures also include a sched-

2The x86-64 CPU driver, including debugging support and libraries,
is 7135 lines of C and 337 lines of assembly (counted by David
A. Wheeler’s “SLOCCount”), 54kB of text and 370kB of static data
(mainly page tables).

8

System cycles (σ) ns

2×4-core Intel 845 (32) 318
2×2-core AMD 757 (19) 270
4×4-core AMD 1463 (21) 585
8×4-core AMD 1549 (20) 774

Table 1: LRPC latency

uler activation, user-level message dispatching code, and
a pass through the thread scheduler, we consider our per-
formance to be acceptable for the moment.

4.4 Monitors
Monitors collectively coordinate system-wide state, and
encapsulate much of the mechanism and policy that
would be found in the kernel of a traditional OS. The
monitors are single-core, user-space processes and there-
fore schedulable. Hence they are well suited to the
split-phase, message-oriented inter-core communication
of the multikernel model, in particular handling queues
of messages, and long-running remote operations.

On each core, replicated data structures, such as mem-
ory allocation tables and address space mappings, are
kept globally consistent by means of an agreement proto-
col run by the monitors. Application requests that access
global state are handled by the monitors, which mediate
access to remote copies of state.

Monitors perform some further housekeeping func-
tions in Barrelfish. As described in Section 4.6, monitors
are responsible for interprocess communication setup,
and for waking up blocked local processes in response
to messages from other cores. A monitor can also idle
the core itself (to save power) when no other processes
on the core are runnable. Core sleep is performed ei-
ther by waiting for an inter-processor interrupt (IPI) or,
where supported, the use of MONITOR and MWAIT in-
structions.

4.5 Process structure
The multikernel model leads to a somewhat different pro-
cess structure than a typical monolithic multiprocessor
OS. A process in Barrelfish is represented by a collec-
tion of dispatcher objects, one on each core on which it
might execute. Communication in Barrelfish is not ac-
tually between processes but between dispatchers (and
hence cores).

Dispatchers on a core are scheduled by the local CPU
driver, which invokes an upcall interface that is provided
by each dispatcher. This is the mechanism used in Psy-
che [48] and scheduler activations [3], and contrasts with
the Unix model of simply resuming execution. Above

this upcall interface, a dispatcher typically runs a core-
local user-level thread scheduler.

The threads package in the default Barrelfish user li-
brary provides an API similar to POSIX threads. We an-
ticipate that language runtimes and parallel programming
libraries will take advantage of the ability to customize
its behavior, but in the meantime the library provides
enough support for implementing the more traditional
model of threads sharing a single process address space
across multiple cores, as we describe in Section 4.8.

4.6 Inter-core communication

In a multikernel, all inter-core communication occurs
with messages. We expect to use different transport im-
plementations for different hardware scenarios. How-
ever, the only inter-core communication mechanism
available on our current hardware platforms is cache-
coherent memory. Barrelfish at present therefore uses a
variant of user-level RPC (URPC) [10] between cores: a
region of shared memory is used as a channel to transfer
cache-line-sized messages point-to-point between single
writer and reader cores.

Inter-core messaging performance is critical for a mul-
tikernel, and our implementation is carefully tailored to
the cache-coherence protocol to minimize the number of
interconnect messages used to send a message. For ex-
ample, on the fast path for a HyperTransport-based sys-
tem, the sender writes the message sequentially into the
cache line, while the receiver polls on the last word of the
line, thus ensuring that in the (unlikely) case that it polls
the line during the sender’s write, it does not see a par-
tial message. In the common case, this causes two round
trips across the interconnect: one when the sender starts
writing to invalidate the line in the receiver’s cache, and
one for the receiver to fetch the line from the sender’s
cache. The technique also performs well between cores
with a shared cache.

As an optimization, pipelined URPC message
throughput can be improved at the expense of single-
message latency through the use of cache prefetching in-
structions. This can be selected at channel setup time for
workloads likely to benefit from it.

Receiving URPC messages is done by polling mem-
ory. Polling is cheap because the line is in the cache
until invalidated; in addition, keeping the endpoints in
an array can allow a hardware stride prefetcher to fur-
ther improve performance. However, it is unreasonable
to spin forever; instead, a dispatcher awaiting messages
on URPC channels will poll those channels for a short
period before blocking and sending a request to its local
monitor to be notified when messages arrive. At present,
dispatchers poll incoming channels for a predetermined
time before blocking, however this can be improved by

9

System Cache Latency Throughput
cycles (σ) ns msgs/kcycle

2×4-core Intel shared 180 (34) 68 11.97
non-shared 570 (50) 214 3.78

2×2-core AMD same die 450 (25) 161 3.42
one-hop 532 (26) 190 3.19

4×4-core AMD shared 448 (12) 179 3.57
one-hop 545 (11) 218 3.53
two-hop 558 (11) 223 3.51

8×4-core AMD shared 538 (8) 269 2.77
one-hop 613 (6) 307 2.79
two-hop 618 (7) 309 2.75

Table 2: URPC performance

Latency Throughput Cache lines used
cycles msgs/kcycle Icache Dcache

URPC 450 3.42 9 8
L4 IPC 424 2.36 25 13

Table 3: Messaging costs on 2×2-core AMD

adaptive strategies similar to those used in deciding how
long to spin on a shared-memory spinlock [37].

All message transports are abstracted behind a com-
mon interface, allowing messages to be marshaled, sent
and received in a transport-independent way. As in most
RPC systems, marshaling code is generated using a stub
compiler to simplify the construction of higher-level ser-
vices. A name service is used to locate other services
in the system by mapping service names and properties
to a service reference, which can be used to establish a
channel to the service. Channel setup is performed by
the monitors.

Table 2 shows the URPC single-message latency and
sustained pipelined throughput (with a queue length of
16 messages); hop counts for AMD refer to the num-
ber of HyperTransport hops between sender and receiver
cores.

Table 3 compares the overhead of our URPC imple-
mentation with L4’s IPC on the 2×2-core AMD system3.
We see that inter-core messages are cheaper than intra-
core context switches in direct cost, but also have less
cache impact and do not incur a TLB flush. They can
also be pipelined to trade off latency for throughput.

4.7 Memory management
Although a multikernel OS is itself distributed, it must
consistently manage a set of global resources, such as
physical memory. In particular, because user-level ap-

3L4 IPC figures were measured using L4Ka::Pistachio of 2009-02-
25.

plications and system services may make use of shared
memory across multiple cores, and because OS code and
data is itself stored in the same memory, the allocation of
physical memory within the machine must be consistent
– for example, the system must ensure that one user pro-
cess can never acquire a virtual mapping to a region of
memory used to store a hardware page table or other OS
object.

Any OS faces the same problem of tracking ownership
and type of in-memory objects. Most systems use some
kind of unique identifiers together with accounting infor-
mation, such as file descriptors in Unix or object han-
dles in Windows, managed by data structures in shared
memory. For Barrelfish, we decided to use a capabil-
ity system modeled on that of seL4 [39]. In this model,
all memory management is performed explicitly through
system calls that manipulate capabilities, which are user-
level references to kernel objects or regions of physical
memory. The model has the useful property of removing
dynamic memory allocation from the CPU driver, which
is only responsible for checking the correctness of op-
erations that manipulate capabilities to memory regions
through retype and revoke operations.

All virtual memory management, including allocation
and manipulation of page tables, is performed entirely by
user-level code [28]. For instance, to allocate and map in
a region of memory, a user process must first acquire ca-
pabilities to sufficient RAM to store the required page ta-
bles. It then retypes these RAM capabilities to page table
capabilities, allowing it to insert the new page tables into
its root page table; although the CPU driver performs the
actual page table and capability manipulations, its sole
task is checking their correctness. The user process may
then allocate more RAM capabilities, which it retypes to
mappable frame capabilities, and finally inserts into its
page tables to map the memory.

We chose capabilities so as to cleanly decentralize re-
source allocation in the interests of scalability. In hind-
sight, this was a mistake: the capability code is unneces-
sarily complex, and no more efficient than scalable per-
processor memory managers used in conventional OSes
like Windows and Linux. All cores must still keep their
local capability lists consistent, to avoid situations such
as user-level acquiring a mapping to a hardware page ta-
ble.

However, one benefit has been uniformity: most op-
erations requiring global coordination in Barrelfish can
be cast as instances of capability copying or retyping, al-
lowing the use of generic consistency mechanisms in the
monitors. These operations are not specific to capabili-
ties, and we would have to support them with any other
accounting scheme.

Page mapping and remapping is an operation which
requires global coordination – if an address space map-

10

ping is removed or its rights are reduced, it is important
that no stale information remains in a core’s TLB be-
fore any action occurs that requires the operation to have
completed. This is implemented by a one-phase commit
operation between all the monitors.

A more complex problem is capability retyping, of
which revocation is a special case. This corresponds to
changing the usage of an area of memory and requires
global coordination, since retyping the same capability in
different ways (e.g. a mappable frame and a page table)
on different cores leads to an inconsistent system. All
cores must agree on a single ordering of the operations
to preserve safety, and in this case, the monitors initiate
a two-phase commit protocol to ensure that all changes
to memory usage are consistently ordered across the pro-
cessors.

4.8 Shared address spaces

We are interested in investigating language runtimes that
extend the multikernel model to user-space applications.
However, for most current programs, Barrelfish supports
the traditional process model of threads sharing a sin-
gle virtual address space across multiple dispatchers (and
hence cores) by coordinating runtime libraries on each
dispatcher. This coordination affects three OS compo-
nents: virtual address space, capabilities, and thread
management, and is an example of how traditional OS
functionality can be provided over a multikernel.

A shared virtual address space can be achieved by ei-
ther sharing a hardware page table among all dispatch-
ers in a process, or replicating hardware page tables with
consistency achieved by message protocols. The trade-
off between these two is similar to that investigated in
Corey [13]; the former is typically more efficient, how-
ever the latter may reduce cross-processor TLB invali-
dations (because it is possible to track which processors
may have cached a mapping), and is also the only way to
share an address space between cores that do not support
the same page table format.

As well as sharing the address space, user applica-
tions also expect to share capabilities (for example, to
mappable memory regions) across cores. However, a ca-
pability in a user’s address space is merely a reference
to a kernel-level data structure. The monitors provide
a mechanism to send capabilities between cores, ensur-
ing in the process that the capability is not pending re-
vocation, and is of a type that may be transferred. The
user-level libraries that perform capability manipulation
invoke the monitor as required to maintain a consistent
capability space between cores.

Cross-core thread management is also performed in
user space. The thread schedulers on each dispatcher ex-
change messages to create and unblock threads, and to

migrate threads between dispatchers (and hence cores).
Barrelfish is responsible only for multiplexing the dis-
patchers on each core via the CPU driver scheduler, and
coordinating the CPU drivers to perform, for example,
gang scheduling or co-scheduling of dispatchers. This
allows a variety of spatio-temporal scheduling policies
from the literature [62,65] to be applied according to OS
policy.

4.9 Knowledge and policy engine
Dealing with heterogeneous hardware and choosing ap-
propriate system mechanisms is a crucial task in a mul-
tikernel. Barrelfish employs a service known as the sys-
tem knowledge base (SKB) [60], which maintains knowl-
edge of the underlying hardware in a subset of first-order
logic.4 It is populated with information gathered through
hardware discovery (including ACPI tables, PCI bus
probes, and CPUID data), online measurement (such as
URPC communication latency and bandwidth between
all core pairs in the system), and pre-asserted facts that
cannot be discovered or measured (such as the intercon-
nect topology of various system boards, and quirks that
correct known flaws in discovered information, such as
ACPI tables). Using this rich repository of data, the SKB
allows concise expression of optimization queries, for
example to allocate device drivers to cores in a topology-
aware manner, to select appropriate message transports
for inter-core communication, and to provide the topol-
ogy information necessary for NUMA-aware memory al-
location.

As one example, we describe in Section 5.1 how the
SKB is used to construct a cache- and topology-aware
network for efficient communication within multicore
machines. Space precludes further discussion of policy
decisions, but we believe that such a high-level, declar-
ative approach to reasoning about the machine hardware
(augmented with online measurements) is an essential
part of a multikernel-based system.

4.10 Experiences
Barrelfish is one concrete implementation of the multik-
ernel model in Section 3, and its structure differs substan-
tially from that of a monolithic OS like Linux or indeed
a hypervisor like Xen [7]. However, we emphasize that
Barrelfish is not the only way to build a multikernel.

In particular, the factoring of the OS node into sepa-
rate CPU driver and monitor components is not required
by the model; our experience is that it is not optimal
for performance, but has compelling engineering advan-
tages. The downside of the separation is that invoca-

4The initial implementation of the SKB is based on a port of the
ECLiPSe constraint programming system [5].

11

tions from processes to the OS are now mostly local RPC
calls (and hence two context switches) rather than system
calls, adding a constant overhead on current hardware of
several thousand cycles. However, this is constant as the
number of cores increases. Moving the monitor into ker-
nel space would remove this penalty, at the cost of a more
complex kernel-mode code base.

In addition, our current network stack (which runs a
separate instance of lwIP [47] per application) is very
much a placeholder. We are interested in appropriate net-
work stack design for multikernels, and in particular we
feel many ideas from RouteBricks [21] are applicable to
a scalable end-system multikernel.

The principal difference between current OS designs
and the multikernel model is not the location of protec-
tion or trust boundaries between system components, but
rather the reliance on shared data as the default com-
munication mechanism. Examples from monolithic sys-
tems include process, thread, and virtual machine control
blocks, page tables, VFS objects, scheduler queues,5 net-
work sockets and inter-process communication buffers.

Some of this state can be naturally partitioned, but (as
we saw in Section 1) the engineering effort to do this
piecemeal in the process of evolving an OS for scalabil-
ity can be prohibitive. Furthermore, state which is in-
herently shared in current systems requires more effort
to convert to a replication model. Finally, the shared-
memory single-kernel model cannot deal with cores that
are heterogeneous at the ISA level.

In contrast, starting with a multikernel model, as in
Barrelfish, allows these issues to be addressed from the
outset. From a research perspective, Barrelfish can be
seen as a useful “proving ground” for experimenting with
such ideas in an environment freed from the constraints
of an existing complex monolithic system.

5 Evaluation

In this section we evaluate how well Barrelfish meets
the goals in Section 3.4: good baseline performance,
scalability with cores, adaptability to different hardware,
exploiting the message-passing abstraction for perfor-
mance, and sufficient modularity to make use of hard-
ware topology-awareness. We start with a detailed case-
study of TLB shootdown, and then look at other work-
loads designed to exercise various parts of the OS.

5Systems with per-processor run queues implement load balanc-
ing and thread migration either via a work stealing or work offloading
model. In both cases this involves access to the run queues of remote
processors.

5.1 Case study: TLB shootdown

TLB shootdown – the process of maintaining TLB con-
sistency by invalidating entries when pages are un-
mapped – is one of the simplest operations in a multi-
processor OS that requires global coordination. It is also
a short, but latency-critical, operation and so represents
a worst-case comparison for a multikernel.

In Linux and Windows, inter-processor interrupts
(IPIs) are used: a core that wishes to change a page
mapping writes the operation to a well-known location
and sends an interrupt to every core that might have the
mapping in its TLB. Each core takes the trap, acknowl-
edges the IPI by writing to a shared variable, invalidates
the TLB entry, and resumes. The initiating core can
continue immediately after every IPI has been acknowl-
edged, since by the time each core resumes to user space
the TLB entry is guaranteed to be flushed. This has low
latency, but can be disruptive as each core immediately
takes the cost of a trap (about 800 cycles). The TLB in-
validation itself is fast, taking 95-320 cycles on a current
x86-64 core.

In Barrelfish, we use messages for shootdown. In the
naive algorithm, the local monitor broadcasts invalidate
messages to the others and waits for all the replies. We
would expect this to show higher latency than the IPI
approach, since the remote monitors handle the mes-
sages only when “convenient”. However, fortunately, the
message-passing paradigm allows us to improve on this
approach without significantly restructuring the code. In
particular, we can exploit knowledge about the specific
hardware platform, extracted from the system knowledge
base at runtime, to achieve very good TLB shootdown
performance.

Figure 6 shows the costs of the raw inter-core mes-
saging mechanisms (without TLB invalidation) for four
URPC-based TLB shootdown protocols on the 8×4-core
AMD system.

In the Broadcast protocol, the master monitor uses a
single URPC channel to broadcast a shootdown request
to every other core. Each slave core polls the same shared
cache, waiting for the master to modify it, and then ac-
knowledges with individual URPCs to the master. This
performs badly due to the cache-coherence protocol used
by AMD64 processors [1, section 7.3]. When the mas-
ter updates the line, it is invalidated in all other caches.
Each slave core then pulls the new copy from the mas-
ter’s cache. With N cores, the data crosses the intercon-
nect N times, and latency grows linearly with the number
of cores.

The Unicast protocol sends individual requests to each
slave over unicast URPC so that the cache lines are only
shared by two cores. While this performs much better
than the broadcast protocol, particularly for a small num-

12

 0

 2

 4

 6

 8

 10

 12

 14

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

La
te

nc
y

(c
yc

le
s

×
 1

00
0)

Cores

Broadcast
Unicast

Multicast
NUMA-Aware Multicast

Figure 6: Comparison of TLB shootdown protocols

ber of cores, it still has linear scalability. The flatter curve
below eight cores is likely to be the processor’s hardware
“stride prefetcher” predicting correctly which cache lines
are likely to be accessed in the master’s receive loop.

The HyperTransport interconnect is effectively a
broadcast network, where each read or write operation
results in probes being sent to all other nodes. How-
ever, newer 4-core Opteron processors have a shared on-
chip L3 cache and appear as a single HyperTransport
node, and so cache lines shared only by these cores will
not result in interconnect traffic. This motivates using
an explicit two-level multicast tree for shootdown mes-
sages. Hence in the Multicast protocol, the master sends
a URPC message to the first core of each processor,
which forwards it to the other three cores in the package.
Since they all share an L3 cache, this second message is
much cheaper, but more importantly all eight processors
can send in parallel without interconnect contention. As
shown in Figure 6, the multicast protocol scales signifi-
cantly better than unicast or broadcast.

Finally, we devised a protocol that takes advantage of
the NUMA nature of the machine by allocating URPC
buffers from memory local to the multicast aggregation
nodes, and having the master send requests to the high-
est latency nodes first. Once again, there are many analo-
gies to networked systems which motivate these changes.
The resulting protocol, labeled NUMA-Aware Multicast
on Figure 6 scales extremely well across the 32-way sys-
tem, showing steps only when the number of levels in the
tree increases.

This communication protocol has good performance
for the 8×4-core AMD system, but relies on hard-
ware knowledge (including the interconnect topology
and memory locality) that differs widely between sys-
tems, and only works when initiated from the first core.
In Barrelfish, we use a query on the system knowledge
base to construct a suitable multicast tree at runtime:

 0

 10

 20

 30

 40

 50

 60

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

La
te

nc
y

(c
yc

le
s

×
 1

00
0)

Cores

Windows
Linux

Barrelfish

Figure 7: Unmap latency on 8×4-core AMD

for every source core in the system, the SKB computes
an optimal route consisting of one multicast aggregation
node per processor socket, ordered by decreasing mes-
sage latency, and its children. These routes are calculated
online at startup, and used to configure inter-monitor
communication.

End-to-end unmap latency: The complete imple-
mentation of unmapping pages in Barrelfish adds a num-
ber of costs to the baseline protocol, and so in practice is
much slower. These include the fixed overhead of LRPC
to the local monitor, the per-message cost of marshaling
and event demultiplexing, scheduling effects in the mon-
itors, and variable overhead when a core’s monitor is not
currently its polling channels.

Nevertheless, as Figure 7 shows, the complete
message-based unmap operation in Barrelfish quickly
outperforms the equivalent IPI-based mechanisms in
Linux 2.6.26 and Windows Server 2008 R2 Beta, En-
terprise Edition. The error bars on the graphs are stan-
dard deviation. We show the latency to change the per-
missions of a page mapped by a varying number of
cores, using mprotect on Linux and VirtualProtect
on Windows. Despite the fact that up to 32 user-level
processes are involved in each unmap operation, per-
formance scales better than Linux or Windows, both of
which incur the cost of serially sending IPIs. The large
overhead on top of the baseline protocol figures is largely
due to inefficiencies in the message dispatch loop of
the user-level threads package, which has not been op-
timized.

5.2 Messaging performance

Two-phase commit

As we discussed in Section 4, Barrelfish uses a dis-
tributed two-phase commit operation for changing mem-

13

 0

 5

 10

 15

 20

 25

 30

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

C
yc

le
s

pe
r o

pe
ra

tio
n

×
 1

00
0

Cores

Single-operation latency
Cost when pipelining

Figure 8: Two-phase commit on 8×4-core AMD

ory ownership and usage via capability retyping. This
necessarily serializes more messages than TLB shoot-
down, and is consequently more expensive. Neverthe-
less, as Figure 8 shows, using the same multicast tech-
nique as with shootdown we achieve good scaling and
performance. If there are enough operations to perform,
we can also pipeline to amortize the latency. The “cost
when pipelining” line shows that a typical capability
retype operation consumes fewer cycles than IPI-based
TLB-shootdowns on Windows and Linux.

The cost of polling

It is reasonable to ask whether polling to receive URPC
messages is a wasteful strategy under real workloads and
job mixes. This depends on a number of factors such
as scheduling policy and messaging load, but we present
a simplistic model here: assume we poll for P cycles
before sleeping and waiting for an IPI, which costs C
cycles. If a message arrives at time t, the overhead (cost
in extra cycles) of message reception is therefore:

overhead =

 t if t ≤ P,
P + C otherwise.

– and the latency of the message is:

latency =

 0 if t ≤ P,
C otherwise.

In the absence of any information about the distribution
of message arrival times, a reasonable choice for P is C,
which gives upper bounds for message overhead at 2C,
and the latency at C.

Significantly, for Barrelfish on current hardware, C is
around 6000 cycles, suggesting there is plenty of time
for polling before resorting to interrupts. C in this case
includes context switch overhead but not additional costs
due to TLB fills, cache pollution, etc.

Barrelfish Linux

Throughput (Mbit/s) 2154 1823
Dcache misses per packet 21 77
source→ sink HT traffic* per packet 467 657
sink→ source HT traffic* per packet 188 550
source→ sink HT link utilization 8% 11%
sink→ source HT link utilization 3% 9%
* HyperTransport traffic is measured in 32-bit dwords.

Table 4: IP loopback performance on 2×2-core
AMD

IP loopback

IP loopback (with no physical network card to impose a
bottleneck) can be a useful stress-test of the messaging,
buffering, and networking subsystems of the OS, since
in many systems a loopback interface is often used for
communication between networked services on the same
host, such as a web application and database.

Linux and Windows use in-kernel network stacks
with packet queues in shared data structures, thus loop-
back utilization requires kernel interaction and shared-
memory synchronization. On Barrelfish, we achieve the
equivalent functionality for point-to-point links by con-
necting two user-space IP stacks via URPC. By execut-
ing a packet generator on one core and a sink on a dif-
ferent core, we can compare the overhead induced by an
in-kernel shared-memory IP stack compared to a URPC
approach.

Our experiment runs on the 2×2-core AMD system
and consists of a UDP packet generator on one core send-
ing packets of fixed 1000-byte payload to a sink that re-
ceives, reads, and discards the packets on another core
on a different socket. We measure application-level UDP
throughput at the sink, and also use hardware perfor-
mance counters to measure cache misses and utilization
of the HyperTransport interconnect. We also compare
with Linux, pinning both source and sink to cores using
libnuma.

Table 4 shows that Barrelfish achieves higher through-
put, fewer cache misses, and lower interconnect utiliza-
tion, particularly in the reverse direction from sink to
source. This occurs because sending packets as URPC
messages avoids any shared-memory other than the
URPC channel and packet payload; conversely, Linux
causes more cache-coherence traffic for shared-memory
synchronization. Barrelfish also benefits by avoiding ker-
nel crossings.

14

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 2 4 6 8 10 12 14 16

C
yc

le
s

×
 1

08

Cores

Barrelfish
Linux

(a) OpenMP conjugate gradient (CG)

 0

 50

 100

 150

 200

 250

 2 4 6 8 10 12 14 16

C
yc

le
s

×
 1

08

Cores

Barrelfish
Linux

(b) OpenMP 3D fast Fourier transform (FT)

 0

 2

 4

 6

 8

 10

 12

 14

 16

 2 4 6 8 10 12 14 16

C
yc

le
s

×
 1

08

Cores

Barrelfish
Linux

(c) OpenMP integer sort (IS)

 0

 5

 10

 15

 20

 25

 2 4 6 8 10 12 14 16

C
yc

le
s

×
 1

08

Cores

Barrelfish
Linux

(d) SPLASH-2 Barnes-Hut

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 2 4 6 8 10 12 14 16

C
yc

le
s

×
 1

08
Cores

Barrelfish
Linux

(e) SPLASH-2 radiosity

Figure 9: Compute-bound workloads on 4×4-core AMD (note different scales on y-axes)

5.3 Compute-bound workloads

In this section we use compute-bound workloads, in the
form of the NAS OpenMP benchmark suite [36] and the
SPLASH-2 parallel application test suite [63], to exercise
shared memory, threads, and scheduling. These bench-
marks perform no IO and few virtual memory operations
but we would expect them to be scalable.

The Barrelfish user-level scheduler supports POSIX-
like threads, and allows processes to share an address
space across multiple cores as in a traditional OS. We
compare applications running under Linux and Barrelfish
on the same hardware, using GCC 4.3.3 as the compiler,
with the GNU GOMP OpenMP runtime on Linux, and
our own implementation over Barrelfish.

Figure 9 shows the results of five applications from the
4×4-core AMD machine6. We plot the compute time in
cycles on Barrelfish and Linux, averaged over five runs;
error bars show standard deviation. These benchmarks
do not scale particularly well on either OS, but at least
demonstrate that despite its distributed structure, Bar-
relfish can still support large, shared-address space paral-
lel code with little performance penalty. The differences
we observe are due to our user-space threads library vs.
the Linux in-kernel implementation – for example, Linux
implements barriers using a system call, whereas our li-

6The remaining OpenMP applications depend upon thread-local
storage, which Barrelfish does not yet support.

brary implementation exhibits different scaling proper-
ties under contention (in Figures 9a and 9c).

5.4 IO workloads
The experiments in this section are designed to exercise
device drivers, interrupts and OS buffering using high-
bandwidth IO, with the aim again of exposing any per-
formance penalty due to the multikernel architecture.

Network throughput

We first measure the UDP throughput of Barrelfish when
communicating over Gigabit Ethernet using an Intel
e1000 card. This exercises DMA, inter-process commu-
nication, networking and scheduling.

Using Barrelfish on the 2×4-core Intel machine, we
ran an e1000 driver and a single-core application that lis-
tens on a UDP socket and echos every received packet
back to the sender. The network stack is lwIP [47] linked
as a library in the application’s domain. Receive and
transmit buffers are allocated by lwIP and passed to the
network card driver, which manages the card’s receive
and transmit rings. The two processes communicate over
a URPC channel, allowing us to vary the placement of
the driver and client on cores.

We use two load generators, also with e1000 NICs,
running Linux and the ipbench daemon [71], which gen-
erates UDP traffic at a configurable rate and measures the

15

achieved echo throughput. We obtained UDP echo pay-
load throughput of up to 951.7 Mbit/s, at which point we
are close to saturating the card. By comparison, Linux
2.6.26 on the same hardware also achieves 951 Mbit/s;
note that we pinned the Linux inetd server to a single
core to prevent sub-optimal process migration in this ex-
periment.

Web server and relational database

Our final IO example is of serving both static and dy-
namic web content from a relational database. This sce-
nario, while still synthetic, is closer to a realistic I/O
bound application configuration.

The 2×2-core AMD machine is used with an Intel
e1000 NIC. First, the machine serves a 4.1kB static web
page to a set of clients, and we measure the throughput of
successful client requests using httperf [54] on a clus-
ter of 17 Linux clients.

On Barrelfish, we run separate processes for the web
server (which uses the lwIP stack), e1000 driver, and a
timer driver (for TCP timeouts). These communicate
over URPC, allowing us to experiment with placement
of domains on cores. The best performance was achieved
with the e1000 driver on core 2, the web server on core
3 (both cores on the same physical processor), and other
system services (including the timer) on core 0.

For comparison, we also run lighttpd [45] 1.4.23 over
Linux 2.6.26 on the same hardware; we tuned lighttpd by
disabling all extension modules and logging, increasing
the maximum number of connections and file descrip-
tors to 1,500,000, using the Linux epoll event handler
mechanism, and enabling hardware checksumming, scat-
ter gather and TCP segmentation offload on the network
interface.

The Barrelfish e1000 driver does not yet support the
offload features, but is also substantially simpler. It sus-
tained 18697 requests per second (640 Mbit/s), versus
8924 for lighttpd on Linux (316 Mbit/s). The perfor-
mance gain is mainly due to avoiding kernel-user cross-
ings by running entirely in user space and communicat-
ing over URPC.

Finally, we use the same load pattern to execute
web-based SELECT queries modified from the TPC-W
benchmark suite on a SQLite [64] database running on
the remaining core of the machine, connected to the web
server via URPC. In this configuration we can sustain
3417 requests per second (17.1 Mbit/s), and are bottle-
necked at the SQLite server core.

5.5 Summary
It would be wrong to draw any quantitative conclu-
sions from our large-scale benchmarks; the systems in-

volved are very different. An enormous investment has
been made in optimizing Linux and Windows for current
hardware, and conversely our system is inevitably more
lightweight (it is new, and less complete). Instead, they
should be read as indication that Barrelfish performs rea-
sonably on contemporary hardware, our first goal from
Section 3.4.

We make stronger claims for the microbenchmarks.
Barrelfish can scale well with core count for these op-
erations, and can easily adapt to use more efficient com-
munication patterns (for example, tailoring multicast to
the cache architecture and hardware topology). Finally
we can also demonstrate the benefits of pipelining and
batching of request messages without requiring changes
to the OS code performing the operations.

Since the Barrelfish user environment includes stan-
dard C and math libraries, virtual memory management,
and subsets of the POSIX threads and file IO APIs, port-
ing applications is mostly straightforward. In the course
of this evaluation we ported a web server, network stack
[47], and various drivers, applications and libraries to
Barrelfish, which gives us confidence that our OS design
offers a feasible alternative to existing monolithic sys-
tems. Nevertheless, bringing up a new OS from scratch is
a substantial undertaking, and limits the extent to which
we can fully evaluate the multikernel architecture. In par-
ticular, this evaluation does not address complex applica-
tion workloads, or higher-level operating system services
such as a storage system. Moreover, we have not evalu-
ated the system’s scalability beyond currently-available
commodity hardware, or its ability to integrate heteroge-
neous cores.

6 Related work

Although a new point in the OS design space, the mul-
tikernel model is related to much previous work on both
operating systems and distributed systems.

In 1993 Chaves et al. [17] examined the tradeoffs be-
tween message passing and shared data structures for
an early multiprocessor, finding a performance tradeoff

biased towards message passing for many kernel opera-
tions.

Machines with heterogeneous cores that communicate
using messages have long existed. The Auspex [11] and
IBM System/360 hardware consisted of heterogeneous
cores with partially shared memory, and unsurprisingly
their OSes resembled distributed systems in some re-
spects. We take inspiration from this; what is new is
the scale of parallelism and the diversity of different ma-
chines on which a general-purpose OS must run. Sim-
ilarly, explicit communication has been used on large-
scale multiprocessors such as the Cray T3 or IBM Blue

16

Gene, to enable scalability beyond the limits of cache-
coherence.

The problem of scheduling computations on multiple
cores that have the same ISA but different performance
tradeoffs is being addressed by the Cypress project [62];
we see this work as largely complementary to our own.
Also related is the fos system [69] which targets scala-
bility through space-sharing of resources.

Most work on OS scalability for multiprocessors to
date has focused on performance optimizations that re-
duce sharing. Tornado and K42 [4, 24] introduced clus-
tered objects, which optimize shared data through the use
of partitioning and replication. However, the base case,
and the means by which replicas communicate, remains
shared data. Similarly, Corey [13] advocates reducing
sharing within the OS by allowing applications to spec-
ify sharing requirements for OS data, effectively relaxing
the consistency of specific objects. As in K42, however,
the base case for communication is shared memory. In a
multikernel, we make no specific assumptions about the
application interface, and construct the OS as a shared-
nothing distributed system, which may locally share data
(transparently to applications) as an optimization.

We see a multikernel as distinct from a microkernel,
which also uses message-based communication between
processes to achieve protection and isolation but remains
a shared-memory, multithreaded system in the kernel.
For instance, Barrelfish has some structural similarity to
a microkernel, in that it consists of a distributed system
of communicating user-space processes which provide
services to applications. However, unlike multiproces-
sor microkernels, each core in the machine is managed
completely independently – the CPU driver and monitor
share no data structures with other cores except for mes-
sage channels.

That said, some work in scaling microkernels is re-
lated: Uhlig’s distributed TLB shootdown algorithm is
similar to our two-phase commit [67]. The microkernel
comparison is also informative: as we have shown, the
cost of a URPC message is comparable to that of the best
microkernel IPC mechanisms in the literature [44], with-
out the cache and TLB context switch penalties.

Disco and Cellular Disco [14, 25] were based on the
premise that large multiprocessors can be better pro-
grammed as distributed systems, an argument comple-
mentary to our own. We see this as further evidence that
the shared-memory model is not a complete solution for
large-scale multiprocessors, even at the OS level.

Prior work on “distributed operating systems” [66]
aimed to build a uniform OS from a collection of inde-
pendent computers linked by a network. There are obvi-
ous parallels with the multikernel approach, which seeks
to build an OS from a collection of cores communicating
over links within a machine, but also important differ-

ences: firstly, a multikernel may exploit reliable in-order
message delivery to substantially simplify its communi-
cation. Secondly, the latencies of intra-machine links are
lower (and less variable) than between machines. Fi-
nally, much prior work sought to handle partial failures
(i.e. of individual machines) in a fault-tolerant manner,
whereas in Barrelfish the complete system is a failure
unit. That said, extending a multikernel beyond a sin-
gle machine to handle partial failures is a possibility for
the future that we discussion briefly below.

Despite much work on distributed shared virtual mem-
ory systems [2, 56], performance and scalability prob-
lems have limited their widespread use in favor of
explicit message-passing models. There are parallels
with our argument that the single-machine programming
model should now also move to message passing. Our
model can be more closely compared with that of dis-
tributed shared objects [6, 32], in which remote method
invocations on objects are encoded as messages in the
interests of communication efficiency.

7 Experience and future work

The multikernel model has been strongly influenced
by the process of building a concrete implementation.
Though not by any means yet a mature system, we have
learned much from the process.

Perhaps unsurprisingly, queuing effects become very
important in a purely message-oriented system, and we
encountered a number of performance anomalies due to
extreme sensitivity to message queue lengths. Under-
standing such effects has been essential to performance
debugging. Scheduling based on queue lengths, as in
Scout [53], may be a useful technique to apply here.

When implementing transports based on cache-
coherent shared memory, we found it important to un-
derstand exactly the cache-coherence protocol. We ex-
perimented with many URPC implementations, with of-
ten unexpected results that were explained by a careful
analysis of cache line states and interconnect messages.

Related future work includes efficient multicast, incast
and anycast URPC transports. As we found in the case of
unmap, there are cases where a multicast tree is more ef-
ficient for performing global operations than many point-
to-point links, and we expect such transports will be im-
portant for scalability to many cores.

Our current implementation is based on homogeneous
Intel and AMD multiprocessors, and so does not rep-
resent a truly heterogeneous environment. A port is in
progress to the ARM processor architecture, which will
allow us to run a Barrelfish CPU driver and monitor on
programmable network cards. This will also allow us to
experiment with specializing data structures and code for
different processors within the same operating system.

17

There are many ideas for future work that we hope to
explore. Structuring the OS as a distributed system more
closely matches the structure of some increasingly pop-
ular programming models for datacenter applications,
such as MapReduce [19] and Dryad [35], where appli-
cations are written for aggregates of machines. A dis-
tributed system inside the machine may help to reduce
the “impedance mismatch” caused by the network inter-
face – the same programming framework could then run
as efficiently inside one machine as between many.

Another area of interest is file systems. Barrelfish cur-
rently uses a conventional VFS-style file-oriented API
backed by NFS. It may be fruitful to draw on techniques
from high-performance cluster file systems and the paral-
lel IO models of cloud computing providers to construct
a scalable, replicated file system inside the computer.

Barrelfish is at present a rather uncompromising im-
plementation of a multikernel, in that it never shares
data. As we noted in Section 2.1, some machines are
highly optimized for fine-grained sharing among a sub-
set of processing elements. A next step for Barrelfish is
to exploit such opportunities by limited sharing behind
the existing replica-oriented interfaces. This also raises
the issue of how to decide when to share, and whether
such a decision can be automated.

8 Concluding Remarks

Computer hardware is changing faster than system soft-
ware, and in particular operating systems. Current OS
structure is tuned for a coherent shared memory with
a limited number of homogeneous processors, and is
poorly suited to efficiently manage the diversity and scale
of future hardware architectures.

Since multicore machines increasingly resemble com-
plex networked systems, we have proposed the multik-
ernel architecture as a way forward. We view the OS
as, first and foremost, a distributed system which may be
amenable to local optimizations, rather than centralized
system which must somehow be scaled to the network-
like environment of a modern or future machine. By
basing the OS design on replicated data, message-based
communication between cores, and split-phase opera-
tions, we can apply a wealth of experience and knowl-
edge from distributed systems and networking to the
challenges posed by hardware trends.

Barrelfish, an initial, relatively unoptimized imple-
mentation of the multikernel, already demonstrates many
of the benefits, while delivering performance on to-
day’s hardware competitive with existing, mature, mono-
lithic kernels. Its source code is available at http://www.
barrelfish.org/.

Acknowledgments

We would like to thank our shepherd, Jeff Dean, the
anonymous reviewers, and Tom Anderson, Steven Hand,
and Michael Scott for their helpful suggestions for how
to improve this paper and Barrelfish in general. We
would also like to thank Jan Rellermeyer, Ankush Gupta,
and Animesh Trivedi for their contributions to Barrelfish,
and Charles Gray for the term “CPU driver”.

References

[1] AMD. AMD64 Architecture Programmer’s Manual Vol-
ume 2: System Programming, Sept. 2007. Publication
number 24593.

[2] C. Amza, A. L. Cox, S. Dwarkadas, P. Keleher, H. Lu,
R. Rajamony, W. Yu, and W. Zwaenepoel. TreadMarks:
Shared memory computing on networks of workstations.
IEEE Computer, 29(2), 1996.

[3] T. E. Anderson, B. N. Bershad, E. D. Lazoswka, and
H. M. Levy. Scheduler activations: Effective kernel sup-
port for the user-level management of threads. ACM
Transactions on Computer Systems, 10:53–79, 1992.

[4] J. Appavoo, D. Da Silva, O. Krieger, M. Auslander,
M. Ostrowski, B. Rosenburg, A. Waterland, R. W. Wis-
niewski, J. Xenidis, M. Stumm, and L. Soares. Experi-
ence distributing objects in an SMMP OS. ACM Trans-
actions on Computer Systems, 25(3), 2007.

[5] K. R. Apt and M. G. Wallace. Constraint Logic Program-
ming using ECLiPSe. Cambridge University Press, 2007.

[6] H. E. Bal, R. Bhoedjang, R. Hofman, C. Jacobs, K. Lan-
gendoen, T. Rühl, and M. F. Kaashoek. Performance
evaluation of the Orca shared-object system. ACM Trans-
actions on Computer Systems, 16(1):1–40, 1998.

[7] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris,
A. Ho, R. Neugebauer, I. Pratt, and A. Warfield. Xen and
the art of virtualization. In Proceedings of the 19th ACM
Symposium on Operating Systems Principles, pages 164–
177, Oct. 2003.

[8] A. Baumann, S. Peter, A. Schüpbach, A. Singhania,
T. Roscoe, P. Barham, and R. Isaacs. Your computer
is already a distributed system. Why isn’t your OS? In
Proceedings of the 12th Workshop on Hot Topics in Op-
erating Systems, May 2009.

[9] B. N. Bershad, T. E. Anderson, E. D. Lazowska, and
H. M. Levy. Lightweight remote procedure call. ACM
Transactions on Computer Systems, 8(1):37–55, 1990.

[10] B. N. Bershad, T. E. Anderson, E. D. Lazowska, and
H. M. Levy. User-level interprocess communication for
shared memory multiprocessors. ACM Transactions on
Computer Systems, 9(2):175–198, 1991.

[11] S. Blightman. Auspex Architecture – FMP Past &
Present. Internal document, Auspex Systems Inc.,
September 1996. http://www.bitsavers.org/pdf/auspex/
eng-doc/848_Auspex_Architecture_FMP_Sep96.pdf.

18

[12] S. Borkar. Thousand core chips: a technology perspec-
tive. In Proceedings of the 44th Annual Design Automa-
tion Conference, pages 746–749, 2007.

[13] S. Boyd-Wickizer, H. Chen, R. Chen, Y. Mao,
F. Kaashoek, R. Morris, A. Pesterev, L. Stein, M. Wu,
Y. Dai, Y. Zhang, and Z. Zhang. Corey: An operating sys-
tem for many cores. In Proceedings of the 8th USENIX
Symposium on Operating Systems Design and Implemen-
tation, pages 43–57, Dec. 2008.

[14] E. Bugnion, S. Devine, K. Govil, and M. Rosenblum.
Disco: running commodity operating systems on scal-
able multiprocessors. ACM Transactions on Computer
Systems, 15(4):412–447, 1997.

[15] C. Caşcaval, J. G. Castaños, L. Ceze, M. Denneau,
M. Gupta, D. Lieber, J. E. Moreira, K. Strauss, and
H. S. Warren, Jr. Evaluation of a multithreaded archi-
tecture for cellular computing. In Proceedings of the 8th
IEEE Symposium on High-Performance Computer Archi-
tecture, pages 311–322, 2002.

[16] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kiel-
stra, K. Ebcioglu, C. von Praun, and V. Sarkar. X10: an
object-oriented approach to non-uniform cluster comput-
ing. In Proceedings of the ACM Symposium on Object-
Oriented Programming Systems, Languages, and Appli-
cations, pages 519–538, 2005.

[17] E. M. Chaves, Jr., P. C. Das, T. J. LeBlanc, B. D. Marsh,
and M. L. Scott. Kernel–Kernel communication in a
shared-memory multiprocessor. Concurrency: Practice
and Experience, 5(3):171–191, 1993.

[18] P. Conway and B. Hughes. The AMD Opteron north-
bridge architecture. IEEE Micro, 27(2):10–21, 2007.

[19] J. Dean and S. Ghemawat. MapReduce: simplified data
processing on large clusters. In Proceedings of the 6th
USENIX Symposium on Operating Systems Design and
Implementation, pages 137–150, 2004.

[20] D. Dice and N. Shavit. TLRW: return of the read-write
lock. In Proceedings of the 4th ACM SIGPLAN Workshop
on Transactional Computing, Feb. 2009.

[21] M. Dobrescu, N. Egi, K. Argyraki, B.-G. Chun, K. Fall,
G. Iannaccone, A. Knies, M. Manesh, and S. Ratnasamy.
RouteBricks: Exploiting Parallelism to Scale Software
Routers. In Proceedings of the 22nd ACM Symposium on
Operating Systems Principles, Oct. 2009.

[22] D. R. Engler, M. F. Kaashoek, and J. O’Toole, Jr. Exok-
ernel: An operating system architecture for application-
level resource management. In Proceedings of the
15th ACM Symposium on Operating Systems Principles,
pages 251–266, Dec. 1995.

[23] M. Fähndrich, M. Aiken, C. Hawblitzel, O. Hodson,
G. C. Hunt, J. R. Larus, and S. Levi. Language sup-
port for fast and reliable message-based communication
in Singularity OS. In Proceedings of the EuroSys Con-
ference, pages 177–190, 2006.

[24] B. Gamsa, O. Krieger, J. Appavoo, and M. Stumm. Tor-
nado: Maximising locality and concurrency in a shared
memory multiprocessor operating system. In Proceed-
ings of the 3rd USENIX Symposium on Operating Sys-
tems Design and Implementation, pages 87–100, Feb.
1999.

[25] K. Govil, D. Teodosiu, Y. Huang, and M. Rosenblum.
Cellular Disco: resource management using virtual clus-
ters on shared-memory multiprocessors. In Proceedings
of the 17th ACM Symposium on Operating Systems Prin-
ciples, pages 154–169, 1999.

[26] M. Gschwind. The Cell Broadband Engine: exploit-
ing multiple levels of parallelism in a chip multipro-
cessor. International Journal of Parallel Programming,
35(3):233–262, 2007.

[27] D. Guniguntala, P. E. McKenney, J. Triplett, and
J. Walpole. The read-copy-update mechanism for sup-
porting real-time applications on shared-memory multi-
processor systems with Linux. IBM Systems Journal,
47(2):221–236, 2008.

[28] S. M. Hand. Self-paging in the Nemesis operating sys-
tem. In Proceedings of the 3rd USENIX Symposium on
Operating Systems Design and Implementation, pages
73–86, Feb. 1999.

[29] J. Held, J. Bautista, and S. Koehl. From a
few cores to many: A tera-scale computing
research overview. White paper, Intel, Sept.
2006. ftp://download.intel.com/research/platform/
terascale/terascale_overview_paper.pdf.

[30] J. N. Herder, H. Bos, B. Gras, P. Homburg, and A. S.
Tanenbaum. MINIX 3: A highly reliable, self-repairing
operating system. Operating Systems Review, 40(3):80–
89, July 2006.

[31] M. D. Hill and M. R. Marty. Amdahl’s law in the multi-
core era. IEEE Computer, 41(7):33–38, 2008.

[32] P. Homburg, M. van Steen, and A. Tanenbaum. Dis-
tributed shared objects as a communication paradigm. In
Proceedings of the 2nd Annual ASCI Conference, pages
132–137, June 1996.

[33] Intel Corporation. QuickPath architecture white paper,
2008.

[34] E. Ipek, M. Kirman, N. Kirman, and J. F. Martinez. Core
fusion: accommodating software diversity in chip mul-
tiprocessors. In Proceedings of the 34th International
Symposium on Computer Architecture, pages 186–197,
2007.

[35] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly.
Dryad: distributed data-parallel programs from sequen-
tial building blocks. In Proceedings of the EuroSys Con-
ference, pages 59–72, 2007.

[36] H. Jin, M. Frumkin, and J. Yan. The OpenMP implemen-
tation of NAS parallel benchmarks and its performance.
Technical Report NAS-99-011, NASA Advanced Super-
computing Division, Moffett Field, CA, USA, Oct. 1999.

[37] A. R. Karlin, K. Li, M. S. Manasse, and S. Owicki.
Empirical studies of competitve spinning for a shared-
memory multiprocessor. In Proceedings of the 13th ACM
Symposium on Operating Systems Principles, pages 41–
55, 1991.

[38] M. Kistler, M. Perrone, and F. Petrini. Cell multipro-
cessor communication network: Built for speed. IEEE
Micro, 26(3):10–23, 2006.

[39] G. Klein, K. Elphinstone, G. Heiser, J. Andronick,
D. Cock, P. Derrin, D. Elkaduwe, K. Engelhardt,

19

R. Kolanski, M. Norrish, T. Sewell, H. Tuch, and S. Win-
wood. seL4: Formal verification of an OS kernel. In
Proceedings of the 22nd ACM Symposium on Operating
Systems Principles, Oct. 2009.

[40] P. Kongetira, K. Aingaran, and K. Olukotun. Niagara:
A 32-way multithreaded Sparc processor. IEEE Micro,
25(2):21–29, 2005.

[41] M. Krohn, E. Kohler, and M. F. Kaashoek. Events can
make sense. In Proceedings of the 2007 Annual USENIX
Technical Conference, pages 1–14, 2007.

[42] R. Kumar, D. M. Tullsen, P. Ranganathan, N. P. Jouppi,
and K. I. Farkas. Single-ISA heterogeneous multi-core
architectures for multithreaded workload performance.
In Proceedings of the 31st International Symposium on
Computer Architecture, pages 64–75, 2004.

[43] H. C. Lauer and R. M. Needham. On the duality of oper-
ating systems structures. In 2nd International Symposium
on Operating Systems, IRIA, 1978. Reprinted in Operat-
ing Systems Review, 13(2), 1979.

[44] J. Liedtke. On µ-kernel construction. In Proceedings of
the 15th ACM Symposium on Operating Systems Princi-
ples, pages 237–250, Dec. 1995.

[45] lighttpd webserver. http://www.lighttpd.net/.
[46] Linux scalability effort. http://lse.sourceforge.net/.
[47] lwIP. http://savannah.nongnu.org/projects/lwip/.
[48] B. D. Marsh, M. L. Scott, T. J. LeBlanc, and E. P.

Markatos. First-class user-level threads. In Proceedings
of the 13th ACM Symposium on Operating Systems Prin-
ciples, pages 110–121, Oct. 1991.

[49] T. G. Mattson, R. Van der Wijngaart, and M. Frumkin.
Programming the Intel 80-core network-on-a-chip teras-
cale processor. In Proceedings of the 2008 International
Conference on Supercomputing, pages 1–11, 2008.

[50] P. E. McKenney and J. Walpole. Introducing technology
into the Linux kernel: A case study. Operating Systems
Review, 42(5):4–17, July 2008.

[51] J. M. Mellor-Crummey and M. L. Scott. Algorithms
for scalable synchronization on shared-memory multi-
processors. ACM Transactions on Computer Systems,
9:21–65, 1991.

[52] Microsoft. Receive-side Scaling enhancements in Win-
dows Server 2008. http://www.microsoft.com/whdc/
device/network/ndis_rss.mspx.

[53] D. Mosberger and L. L. Peterson. Making paths explicit
in the Scout operating system. In Proceedings of the 2nd
USENIX Symposium on Operating Systems Design and
Implementation, pages 153–167, Oct. 1996.

[54] D. Mosberger and J. Tin. httperf: A tool for measuring
web server performance. Performance Evaluation Re-
view, 26(3):31–37, Dec. 1998.

[55] E. B. Nightingale, O. Hodson, R. McIlroy, C. Hawblitzel,
and G. Hunt. Helios: Heterogeneous multiprocessing
with satellite kernels. In Proceedings of the 22nd ACM
Symposium on Operating Systems Principles, 2009.

[56] J. Protić, M. Tomašević, and V. Milutinović. Distributed
shared memory: Concepts and systems. IEEE Parallel
and Distributed Technology, 4(2):63–79, 1996.

[57] M. Russinovich. Inside Windows Server 2008 kernel
changes. Microsoft TechNet Magazine, Mar. 2008.

[58] M. Russinovich. Inside Windows 7. Microsoft MSDN
Channel9, Jan. 2009.

[59] K. Sankaralingam, R. Nagarajan, H. Liu, C. Kim, J. Huh,
D. Burger, S. W. Keckler, and C. R. Moore. Exploiting
ILP, TLP, and DLP with the polymorphous TRIPS archi-
tecture. In Proceedings of the 30th International Sympo-
sium on Computer Architecture, pages 422–433, 2003.

[60] A. Schüpbach, S. Peter, A. Baumann, T. Roscoe,
P. Barham, T. Harris, and R. Isaacs. Embracing diversity
in the Barrelfish manycore operating system. In Proceed-
ings of the Workshop on Managed Many-Core Systems,
June 2008.

[61] L. Seiler, D. Carmean, E. Sprangle, T. Forsyth,
M. Abrash, P. Dubey, S. Junkins, A. Lake, J. Sugerman,
R. Cavin, R. Espasa, E. Grochowski, T. Juan, and P. Han-
rahan. Larrabee: a many-core x86 architecture for visual
computing. ACM Transactions on Graphics, 27(3):1–15,
2008.

[62] D. Shelepov and A. Fedorova. Scheduling on hetero-
geneous multicore processors using architectural signa-
tures. In Proceedings of the Workshop on the Interaction
between Operating Systems and Computer Architecture,
2008.

[63] Stanford parallel applications for shared memory
(SPLASH-2). http://www-flash.stanford.edu/apps/
SPLASH/.

[64] SQLite database engine. http://www.sqlite.org/.
[65] D. Tam, R. Azimi, and M. Stumm. Thread cluster-

ing: sharing-aware scheduling on SMP-CMP-SMT mul-
tiprocessors. In Proceedings of the EuroSys Conference,
pages 47–58, 2007.

[66] A. S. Tanenbaum and R. van Renesse. Distributed oper-
ating systems. ACM Computing Surveys, 17(4):419–470,
1985.

[67] V. Uhlig. Scalability of Microkernel-Based Systems.
PhD thesis, Computer Science Department, University of
Karlsruhe, Germany, June 2005.

[68] S. Vangal, J. Howard, G. Ruhl, S. Dighe, H. Wilson,
J. Tschanz, D. Finan, P. Iyer, A. Singh, T. Jacob, S. Jain,
S. Venkataraman, Y. Hoskote, and N. Borkar. An 80-tile
1.28TFLOPS network-on-chip in 65nm CMOS. In Inter-
national Solid-State Circuits Conference, pages 98–589,
Feb. 2007.

[69] D. Wentzlaff and A. Agarwal. Factored operating sys-
tems (fos): The case for a scalable operating system for
multicores. Operating Systems Review, 43(2), Apr. 2009.

[70] D. Wentzlaff, P. Griffin, H. Hoffmann, L. Bao, B. Ed-
wards, C. Ramey, M. Mattina, C.-C. Miao, J. F. Brown,
III, and A. Agarwal. On-chip interconnection architec-
ture of the Tile Processor. IEEE Micro, 27(5):15–31,
2007.

[71] I. Wienand and L. Macpherson. ipbench: A framework
for distributed network benchmarking. In AUUG Winter
Conference, Melbourne, Australia, Sept. 2004.

20

