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Abstract
Solid-state devices (SSDs) have the potential to replace
traditional hard disk drives (HDDs) as the de facto stor-
age medium. Unfortunately, there are several decades of
spinning-media assumptions embedded in the software
stack as an “unwritten contract” [20]. In this paper, we
revisit these system-level assumptions in light of SSDs
and find that several of them are invalidated by SSDs,
breaking the unwritten contract and resulting in poor
performance and lifetime. The underlying cause is the
incorrect division of labor between file systems and stor-
age. Block management must be removed from the file
system and delegated to the SSD to prevent further ac-
cumulation of storage-specific assumptions. We find that
object-based storage is an appropriate way to achieve
this.

1 Introduction

Storage systems export a simple abstraction of a linear
block-level interface that has worked well for cases rang-
ing from a single disk to the aggregation of disks such as
RAID arrays and logical volumes. In fact, the simplicity
of the interface has helped to hide the complexity of the
underlying device from higher-level systems.

Unfortunately, the interface has also hidden device-
specific details, so that the file system is forced to make
assumptions about the underlying storage, referred to by
Schlosser and Ganger as an “unwritten contract” [20].
Not surprisingly, most of these assumptions are re-
garding block management such as allocation, layout,
scheduling, and cleaning, all of which could benefit from
device-specific knowledge. For example, file systems
assume that random accesses are much slower than se-
quential ones, and hence the block management layer
is optimized for this. While this assumption is valid
for disks, when the properties of the underlying device
change, such assumptions may either hold or fail. For

example, for MEMS-based storage, Schlosser et al. find
that the existing abstractions are mostly valid [20].

We reexamine the existing storage abstraction and
the resulting assumptions in light of solid-state devices
(SSDs). SSDs are different from disk drives in many
aspects such as unique semiconductor properties, inter-
nal architecture, and controller firmware, which affect
the performance, reliability, lifetime, power, and security
properties of the SSDs. Overall, SSDs are substantially
complex and self-managing and require more informa-
tion than is provided by the standard storage interface.

To find out if the disk-specific assumptions hold for
SSDs, we list six system-level assumptions (three of
which are from the unwritten contract as originally
stated) and explain how each of them fail for SSDs, re-
sulting in poor performance and lifetime. The underlying
problem is the incorrect division of labor: file systems
perform block management, which for a device such as
an SSD is best done internally because of its knowledge
of intricate device-specific properties, policies, and algo-
rithms.

A more expressive interface such as object-based stor-
age (OSD) [10, 11, 22] can improve the current state of
the art. First, OSD delegates finer details of block man-
agement to the SSD, thereby preventing any new storage-
specific assumptions. Second, OSD expresses the inten-
tions of the higher layers clearly, thereby improving the
internal SSD operations.

2 Background

Storage Interface. Storage access protocols such as
SCSI and ATA/IDE export a narrow, block-based inter-
face with simple read and write APIs to access the
logical block number (LBN) (a 512-byte sector). A stor-
age controller internally maps the LBN to a physical sec-
tor, which is hidden and fixed for most cases.

The main disadvantage of the block-based interface is
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Figure 1: SSD Architecture.

the absence of higher-level semantics. Several previous
works note this deficiency and propose more expressive
interfaces [5–7, 9]; some even allow programming the
storage controller [1, 16, 21]. One approach is to use an
object-based interface [10, 11, 22], which exports the ab-
straction of an object as a collection of bytes. Structures
such as trees, tables, files, and directories can be repre-
sented as objects, reflecting the higher-level semantics
better than a block-based interface; the device controller
performs block allocation and layout for the objects.

Solid-State Devices. An SSD consists of a set of flash
memory packages that are connected to a controller (Fig-
ure 1). Each package has one or more dies; each die has
multiple planes, which in turn have many blocks; each
block consists of many 4 KB pages [18].

SSDs differ from HDDs on 3 main properties. The
first obvious difference is the absence of mechanical
moving parts. Second, flash pages are non-overwrite
in nature and must be erased before being overwritten.
To hide the high erase overhead and create the abstrac-
tion of an in-place write, modern SSDs implement a
log-structured design [17] in the flash translation layer
(FTL) [15]. To uniformly spread the block usage, wear-
leveling is also implemented. Finally, SSDs have several
layers of parallelism that is dictated by the flash packages
and the way they are connected to the controller.

There are two types of NAND flash memory: single-
level cell (SLC) and multi-level cell (MLC). SLC flash
stores a single bit of data per cell, while MLC flash stores
multiple bits per cell. MLC flash has some drawbacks
such as shorter lifetime (10K erase cycles vs 100K erase
cycles of SLC), slower write, and erase operations.

3 Failed Assumptions

In this section, we discuss the system-level assumptions
that fail when applied to SSDs, and the reasons behind
these failures. In Table 1, we list the original (1-3)
and extended terms of the unwritten contract and state
whether they are satisfied or violated by different de-
vices. This list is by no means complete because we

focus only on block-management issues; more assump-
tions may be added as our experience with SSDs grows.
For comparison, we list RAID arrays and MEMS-based
storage, but for the rest of the paper we focus only on
how the assumptions fail on SSDs.

3.1 Sequential vs. Random
In a disk, the latency and bandwidth of sequential ac-
cess are several tens of times better than random access.
However, on SSDs that use a log-structured FTL [15],
both sequential and random writes are likely to take sim-
ilar time. Table 2 lists the ratio of sequential-to-random
bandwidth for an HDD (a Seagate Barracuda 7200.11
drive) and several SSDs. One of the SSDs is simu-
lated (S4slc sim) using the simulator from our previous
work [2], while others are real (S1slc, S2slc, S3slc,
S5mlc). We anonymize the real SSDs because they
are engineering samples and pre-production models. To
help the reader understand the results better, we specify
whether the devices use SLC or MLC flash memory.

From the table, we can observe that SSDs (using SLC
or MLC memories) have random-read performance that
is only a few times smaller than their sequential-read per-
formance. This is even true for writes on certain SSDs
(S1slc, S4slc sim, S5mlc), but not on all of them; in fact,
some of the SSDs (S2slc, S3slc) have random-write per-
formance that is worse than HDDs. One of the reasons
for this poor performance is write amplification, which
we will discuss later (§3.4).

From the above results, we can see that the gap be-
tween sequential and random accesses is narrowing on
SSDs. File systems that run primarily on SSDs must re-
consider the need for complex policies to achieve block-
level sequentiality. Instead, a file system must focus
on higher-level operations such as object management,
consistency, and recovery, and move the low-level block
management to the SSD, using say, the OSD interface.

3.2 Logical-to-Physical Mapping
The second term of the unwritten contract considers the
relation between logical and physical sectors, and un-
derstanding it is important for I/O scheduling. On an
HDD, nearby LBNs translate well to physical proximity.
However, this contract fails on an SSD because of the
log-structured design, cleaning, and wear-leveling, all of
which make it harder to estimate the location of a log-
ical sector. In fact, the physical location is irrelevant if
the ratio of sequential to random accesses approaches 1.
This further motivates the conclusion that the file system
accesses must be in terms of objects (or parts of objects)
and the SSD must handle the low-level sector-specific
scheduling.



Contract Disk RAID MEMS SSD
1. Sequential accesses are much better than random accesses T T T F (flash memory, no mechanical parts)
2. Distant LBNs lead to longer seek times T † F T F (log-structured writes)
3. LBN spaces can be interchanged F F T F (integration of SLC and MLC memory)
4. Data written is equal to data issued (no write amplification) T F T F (ganging, striping, larger logical pages)
5. Media does not wear down T T T F (semiconductor properties)
6. Storage devices are passive with little background activity T † F T F (cleaning and wear-leveling)

Table 1: Unwritten Contract. Terms of the unwritten contract and whether they are satisfied (T ) or not (F ) by various
devices; a † means that the contract is only approximately satisfied because the device has grown more complex. For
SSDs, a brief reason is also given.

Read Write
Device Seq Rand Ratio Seq Rand Ratio

HDD 86.2 0.6 143.7 86.8 1.3 66.8
S1slc 205.6 18.7 11.0 169.4 53.8 3.1
S2slc 40.3 4.4 9.2 32.8 0.1 328.0
S3slc 72.5 29.9 2.4 75.8 0.5 151.6
S4slc sim 30.5 29.1 1.1 24.4 18.4 1.3
S5mlc 68.3 21.3 3.2 22.5 15.3 1.5

Table 2: Ratio of Sequential to Random Bandwidth.

We performed a preliminary analysis with a new al-
gorithm for SSD, called shortest wait time first (SWTF),
which uses the queue wait times of all the parallel ele-
ments in an SSD and schedules an I/O that has the short-
est wait time. On a synthetic workload that issues ran-
dom I/Os (with 2/3 reads and 1/3 writes), we found that
SWTF improves the response time by about 8% when
compared to FCFS. More thorough analysis is required
to find the effectiveness of such SSD-specific algorithms.

3.3 Interchangeable Address Space
The third term of the contract assumes that the logical ad-
dress space is uniformly spread over the device. This is
invalidated by disks because of zoned recording, where
the outermost tracks accommodate more logical pages
than innermost ones; that is, outer-track bandwidth is
greater than the inner-track bandwidth. Today, SSDs are
homogeneous, using only a single type of memory (ei-
ther SLC or MLC), keeping the contract valid. However,
we believe that in the future, SSDs might be constructed
with multiple types of memories (SLC/MLC). In such
systems, this contract will be violated because MLC-type
memories can hold more data and have different timing
characteristics than SLC. Such heterogeneity in the ad-
dress space can be better utilized if the device performs
block allocation for higher-level objects. For example,
an SSD can choose to co-locate all the data belonging to
a root object in SLC memory for faster access.

3.4 Write Amplification
Operating systems typically assume that the time taken
to complete an I/O is proportional to the I/O size. How-
ever, in an SSD, writes may be amplified into a larger
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Figure 2: Write Amplification. In S2slc, maximum
bandwidth is achieved when the write size aligns with
the stripe size (1 MB).

I/O due to several reasons: first, when the logical page is
larger than the physical page size; second, when a write
is issued in-place using a read-modify-erase-write cycle.
Write amplification is not a new phenomenon; it happens
on RAID arrays that need to update parity blocks.

We measured the effect of write amplification on one
of the engineering samples (a low-end SSD, S2slc); Fig-
ure 2 shows the results. We plot the bandwidth against
the write size. One can observe that the bandwidth
is poor on small write sizes (e.g., 512 bytes). As we
increased the write size, the bandwidth improved and
reached its maximum at 1 MB (the SSD’s stripe size).
As we increased the write size further (e.g., 1 MB + 512
bytes), the bandwidth again dropped, and this behavior
repeated to give a saw-tooth pattern. We believe that
this behavior is due to striping the logical page across a
gang of flash packages that share the buses [2]. A similar
saw-tooth pattern was noticed by Schindler et al. for disk
drives on track-aligned accesses [19]. However, in their
case it was due to the effect of track switches and rota-
tional latencies. It is important to note that write caches
might not always mask the write amplification; for ex-
ample, S3slchas a write buffer cache of 16 MB, but it is
ineffective in masking the write amplifications, as can be
seen from the random-write performance in Table 2.

Write amplification can be reduced by merging writes
and aligning them to stripe sizes. Since it is harder to
estimate the stripe size and alignment boundaries from a
file system (especially in the presence of a write cache



Probability of
sequential access 0 0.2 0.4 0.6 0.8
Unaligned 10.6 10.6 10.5 10.2 10.5
Aligned 10.6 10.4 8.9 7.6 5.6

Table 3: Improved Response Time with Write Align-
ment. Average I/O response time (in ms) for unaligned
and stripe-aligned 4 KB writes with varying degrees of
sequentiality.

Postmark TPCC Exchange IOzone
Improvement (%) 1.15 3.08 4.89 36.54

Table 4: Macro Benchmarks with Stripe-aligned
Writes.

and background activity), an SSD must be responsible
for sector allocation and layout according to the stripe
sizes. Table 3 shows results from stripe-aligned and un-
aligned writes. We simulated a 32 GB SSD with one
gang of eight 4 GB flash packages. A single 32 KB log-
ical page spanned over all the packages. We ran a syn-
thetic workload that issued a stream of writes with vary-
ing degrees of sequentiality. We compared two schemes:
one, issuing the writes as they arrive; two, merging and
aligning writes on logical page boundaries. On a com-
pletely random workload, both schemes worked simi-
larly because of the small chance to merge the writes
into stripe sizes. As the sequentiality increased, align-
ing writes paid off well, resulting in an improvement of
over 50%. Table 4 presents the improvement in response
time for various workload traces. Of all the workloads,
IOzone benefits the most (over 36% improvement) due
to its large write sizes.

3.5 Block Wear
File systems assume that the media wear-down does not
depend on the number of writes to particular sectors.
However, flash memory blocks have limited erase cy-
cles before wearing out. Therefore, mid-range and high-
end SSDs implement cleaning and wear-leveling to uni-
formly spread the wear-down of blocks.

SSDs clean by retaining the most recent version of
all the logical pages, including those that have been re-
leased by the file system, leading to a lot of useless activ-
ity. The effectiveness of cleaning and wear-leveling can
be improved by using file-system-level semantic knowl-
edge, specifically the block allocation status, which is not
available to an SSD.

An SSD can use the block allocation status to imple-
ment informed cleaning and wear leveling that avoids
retaining the free pages. We used our SSD simulator
to analyze the benefits of informed cleaning by running
block-level traces that contain read, write, and block-free
operations. The traces were collected by running the

Transactions 5000 6000 7000 8000
Relative pages moved 0.31 0.25 0.35 0.50
Relative cleaning time 0.69 0.60 0.63 0.69

Table 5: Improved Cleaning with Free-Page Infor-
mation. The table shows decrease in pages moved and
cleaning time with free-page information relative to the
default SSD (i.e., without free-page information). The
actual numbers of pages moved (in 1000s) for the de-
fault SSD are, 88159, 155465, 217130, and 284409, for
5K to 8K transactions. The actual cleaning times (in sec-
onds) for the default SSD are, 49147, 71975, 93569, and
116185 for 5K to 8K transactions.

Postmark benchmark [14] on a pseudo-device driver that
uses Linux Ext3 knowledge to identify the free sectors.
The SSD simulator was modified such that the cleaning
and wear-leveling logic disregard the flash pages corre-
sponding to the free logical pages. To the best of our
knowledge, this is the first study to measure the effect of
free-page knowledge in SSD cleaning.

Table 5 shows the improvements in cleaning in terms
of the number of pages that need to be reclaimed and
the cleaning time for an 8 GB SSD; both measures are
shown relative to the default SSD that does not use the
free-page information. We observe that informed clean-
ing reduces the number of reclaimable pages by at most
about one-half. Informed cleaning reduces the cleaning
time by 30-40%, which can improve the overall running
time by about 3-4%. However, the improvements are
workload-dependent.

3.6 Background Activity

Storage systems are assumed to be passive and to act
only when a request is issued from a higher-level soft-
ware layer. While this is true on a single HDD, SSDs
perform a considerable amount of background activity
due to cleaning and wear-leveling. Therefore, it becomes
hard to predict the I/O latency; for example, it is hard
to guarantee QoS on a system with SSDs because the
host has no control over when the SSD engages in back-
ground activities. This is especially true if the SSD is
full and the degree of internal fragmentation is high [4].
The background activity can be controlled by informing
the SSD about I/O priorities or by marking certain ob-
jects as high-priority. For example, an SSD can provide
preferential treatment to high-priority objects or I/Os by
delaying its background activity.

We modified the cleaning logic of our SSD simula-
tor to be aware of request priorities. If there are no out-
standing priority requests, cleaning starts when the num-
ber of free pages falls below a low threshold. However, if
there are priority requests, cleaning is postponed until the
number of free pages falls below a critical threshold. We
call this priority-aware and compare it with a priority-
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Writes (%) 20 40 50 60 80
Improvement (%) 0 9.56 10.27 9.61 9.47

Table 6: Response Time Improvement From Priority-
Aware Cleaning. When the percentage of writes is
small (less than 40%), cleaning does not happen fre-
quently and hence foreground requests are not affected
(and therefore no improvement).

agnostic scheme, which starts cleaning at the low thresh-
old irrespective of the outstanding requests. Note that
when there is no priority information available, priority-
agnostic is the default technique to use.

We evaluated a 32 GB SSD using synthetic bench-
marks with request inter-arrival times uniformly dis-
tributed between 0 and 0.1 ms. The fraction of prior-
ity requests was set to 10%; critical and low thresholds
were fixed at 2% and 5% of free pages. In Figure 3,
we plot the response time of priority requests (marked as
foreground) and non-priority requests (marked as back-
ground). Table 6 shows the corresponding improvement
in response time for priority requests. We observe that
under the priority-aware scheme, the response time of
foreground requests improve by about 10%. However,
the cost of this improvement is reflected on the back-
ground I/Os, whose response time increased as well.

3.7 Object-based Storage and SSD
As storage devices grow more complex, assumptions
made by higher layers fail. We believe that certain func-
tionalities, specifically those related to block manage-
ment, are more appropriately handled by the device con-
troller with its intricate knowledge of the inner work-
ings of the device. However, to perform the block man-
agement correctly and efficiently, devices must also un-
derstand the high-level intentions (semantics) behind the
simple reads and writes.

Broadly, there are two ways by which the device
can obtain more information: explicitly, through new or

modified interfaces; or implicitly, by using reverse en-
gineering techniques. Since reverse engineering tech-
niques can add more complexity to the device firmware
and do not minimize the functionalities at higher layers,
we focus only on explicit approaches. Existing interfaces
can be patched with additional commands to convey the
operation semantics. For example, the TRIM command
has been proposed to add file delete notifications to the
ATA interface [8]. While this approach offers the least
resistance in the device-interface evolution, it still oper-
ates on the block level, thereby letting the file system per-
form the block management. Moreover, existing inter-
faces may not provide sufficient extensions for new com-
mands. In such cases, new interfaces such as NVMHCI
have been proposed [13]. However, while NVMHCI
conveys more information than traditional SCSI/ATA,
it still lets the higher layers manage and operate at the
block level. We believe that OSD interface provides a
nice alternative by conveying more information and let-
ting the device handle low-level operations.

For several of the aforementioned contract violations,
an OSD provides a better alternative. For example, a
file system should operate on objects and let the de-
vice handle the logical to physical mapping, sequential-
random accesses to (parts of) objects, and stripe-aligned
accesses. Additionally, an SSD can use the OSD inter-
face and manage the space for objects (including the al-
location and release of pages to objects) in order to im-
plement informed cleaning. An additional benefit of us-
ing an OSD is that object attributes can be set to convey
read-only data, which could be used for cold data place-
ment during wear-leveling. Finally, I/Os to objects can
be marked with a priority to schedule them appropriately
with background activities.

4 Related Work

Several previous researchers have noted the need for
more expressive storage interfaces for disks [1, 5, 6,
9, 16, 21], RAID arrays [7], and MEMS-based de-
vices [12, 20]. Among these, the most closely related
work is by Schlosser and Ganger, which examines the OS
assumptions in the context of MEMS-based devices [20].
They list the first three terms of the unwritten contract
and show how MEMS-based devices obey them, obvi-
ating the need for new interfaces or algorithms. In an-
other related paper, Ajwani et al. characterize a variety
of SSDs and argue for new algorithms for SSDs and hy-
brid devices [3]. However, they still use the block-level
interface. We argue for a new, richer interface.

New interface specifications are being proposed for
SSDs, like NVMHCI [13] and TRIM [8], but they still let
the higher layers manage the blocks, resulting in most of
the problems we discussed earlier. Using the OSD inter-



face provides a clean separation between the file system
and block management operations, enabling the SSD to
handle them optimally.

5 Conclusion

Over the past 5 decades, OS and storage systems have
evolved independently across a narrow and fixed storage
interface. One of the side effects of this evolution is the
accumulation of device-specific assumptions in the stor-
age stack, specifically in the block management layer.
Unless the block management is removed from the file
system and delegated to the storage, such assumptions
are likely to carry over and grow in the next generation
of storage devices as well. SSDs are evolving and have
the potential to become the ubiquitous storage media. As
our initial results have shown, it is time we switch from
the narrow, block-based interface to a richer object-based
storage to improve the performance and longevity.
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