
Biscuit: A Framework for Near-Data Processing of Big Data Workloads

Boncheol Gu, Andre S. Yoon, Duck-Ho Bae, Insoon Jo, Jinyoung Lee, Jonghyun Yoon,
Jeong-Uk Kang, Moonsang Kwon, Chanho Yoon, Sangyeun Cho, Jaeheon Jeong, Duckhyun Chang

Memory Business, Samsung Electronics Co., Ltd.

Abstract—Data-intensive queries are common in business
intelligence, data warehousing and analytics applications. Typ-
ically, processing a query involves full inspection of large in-
storage data sets by CPUs. An intuitive way to speed up such
queries is to reduce the volume of data transferred over the
storage network to a host system. This can be achieved by filter-
ing out extraneous data within the storage, motivating a form
of near-data processing. This work presents Biscuit, a novel
near-data processing framework designed for modern solid-
state drives. It allows programmers to write a data-intensive
application to run on the host system and the storage system in
a distributed, yet seamless manner. In order to offer a high-level
programming model, Biscuit builds on the concept of data flow.
Data processing tasks communicate through typed and data-
ordered ports. Biscuit does not distinguish tasks that run on
the host system and the storage system. As the result, Biscuit
has desirable traits like generality and expressiveness, while
promoting code reuse and naturally exposing concurrency.
We implement Biscuit on a host system that runs the Linux
OS and a high-performance solid-state drive. We demonstrate
the effectiveness of our approach and implementation with
experimental results. When data filtering is done by hardware
in the solid-state drive, the average speed-up obtained for the
top five queries of TPC-H is over 15×.

Keywords-near-data processing; in-storage computing; SSD;

I. INTRODUCTION

Increasingly more applications deal with sizable data sets

collected through large-scale interactions [1, 2], from web

page ranking to log analysis to customer data mining to

social graph processing [3–6]. Common data processing

patterns include data filtering, where CPUs fetch and inspect

the entire dataset to derive useful information before further

processing. A popular processing model is MapReduce [7]

(or Hadoop [8]), in which a data-parallel map function filters

data. Another approach builds on traditional database (DB)

systems and utilizes select and project operations in filtering

structured records.

Researchers have long recognized the inefficiency of

traditional CPU-centric processing of large data sets. In

order to make data-intensive processing performance and en-

ergy efficient, consequently, prior work explored alternative,

near-data processing (NDP) strategies that take computation

to storage (i.e., data source) rather than data to CPUs [9–

17]; these studies argue that excess compute resources

within “active disks” could be leveraged to locally run data

processing tasks. As storage bandwidth increases signifi-

cantly with the introduction of solid-state drives (SSDs) and

data-intensive applications proliferate, the concept of user-

programmable active disk becomes even more compelling;

energy efficiency and performance gains of two to ten were

reported [12–15].1

Most prior related work aims to quantify the benefits

of NDP with prototyping and analytical modeling. For

example, Do et al. [12] run a few DB queries on their “Smart

SSD” prototype to measure performance and energy gains.

Kang et al. [20] evaluate the performance of relatively simple

log analysis tasks. Cho et al. [13] and Tiwari et al. [14]

use analytical performance models to study a set of data-

intensive benchmarks. While these studies lay a foundation

and make a case for SSD-based NDP, they remain limitations

and areas for further investigation. First, prior work focuses

primarily on proving the concept of NDP and pays little

attention to designing and realizing a practical framework on

which a full data processing system can be built. Common to

prior prototypes, critical functionalities like dynamic loading

and unloading of user tasks, standard libraries and support

for a high-level language, have not been pursued. As a result,

realistic large application studies were omitted. Second, the

hardware used in some prior work is already outdated (e.g.,

3Gbps SATA SSDs) and the corresponding results may not

hold for future systems. Indeed, we were unable to reproduce

reported performance advantages of in-storage data scanning

in software on a state-of-the-art SSD. We feel that there is a

strong need in the technical community for realistic system

design examples and solid application level results.

This work describes Biscuit, a user-programmable NDP

framework designed specifically for fast solid-state storage

devices and data-intensive applications. We portray in detail

its design and system realization. In designing Biscuit, our

primary focus has been ensuring a high level of programma-

bility, generality (expressiveness) and usability. We make the

following key design choices:

Programming model: Biscuit is inspired by flow-based pro-
gramming models [21]. A Biscuit application is constructed

of tasks and data pipes connecting the tasks. Tasks may run

on a host computer or an SSD. Adoption of the flow-based

programming model greatly simplifies programming as users

1Another approach to NDP could take place in the context of main
memory (e.g., intelligent DRAM [18]). Our work specifically targets NDP
within the secondary storage and does not consider such main memory
level processing. See Balasubramonian et al. [19] for a list of recent work
spanning both approaches.

2016 ACM/IEEE 43rd Annual International Symposium on Computer Architecture

1063-6897/16 $31.00 © 2016 IEEE

DOI 10.1109/ISCA.2016.23

153

2016 ACM/IEEE 43rd Annual International Symposium on Computer Architecture

1063-6897/16 $31.00 © 2016 IEEE

DOI 10.1109/ISCA.2016.23

153

����
����	�
�

����
����	�
�

��
��

���
�������

�
��������
�

���
����

����	�
�

����
����	�
�

��
��
 ��
��

�

���
����

����	�
�

����
����	�
�

������

���

������

���

�
�����
�
��������
��
��

���

��

��

����
����	�
�

����
����	�
�

������
�
���

������

���

��

�

���

��
� ��
�

Figure 1. Various host computer and storage organizations. (a) Simple: A host computer with a single SSD. (b) Scale-up: A host computer with multiple
SSDs. (c) Networked: A host computer with a networked storage node (e.g., shared SAN). (d) Scale-out: A host computer with multiple networked
storage nodes (e.g., Hadoop cluster).

are freed of orchestrating communication or manually en-

forcing synchronization.

Dynamic task loading/unloading: Biscuit allows the user

to dynamically load user tasks to run on the SSD. Resources

needed to run user tasks are allocated at run time. This

feature decouples user application development and SSD

firmware development, making NDP deployment practical.

Language support: Biscuit supports (with few exceptions)

full C++11 features and standard libraries. By programming

at a high level, users are expected to write their applications

with ease and experience fewer errors.

Thread and multi-core support: Biscuit implements light-

weight fiber multithreading and comes natively with multi-

core support. Moreover, it allows programmers to seamlessly

utilize available hardware IPs (e.g., DB scanner [22]) by

encapsulating them as built-in tasks.

As such, the main contribution of this paper is the design

and implementation of Biscuit itself. Biscuit currently runs

on a Linux host and a state-of-the-art enterprise-class NVMe

SSD connected to the host through fast PCIe Gen.3 links.

To date, Biscuit is the first NDP system reported, that runs

on a commodity NVMe SSD. This paper also discusses

challenges met during the course of system realization and

key design trade-offs made along the way. Because it is

unlikely for a single framework to prevail in all possible

applications, future NDP systems will likely require multiple

frameworks. We believe that the work described in this paper

sets an important NDP system design example. We also

make other major contributions in this work:

• We report through measurement performance of key

operations of NDP on a real, high-performance SSD. For

example, it sustains sequential read bandwidth in excess

of 3GB/s using PCIe Gen.3 ×4 links. The SSD-internal

bandwidth (that an NDP program can tap) is shown to be

higher than this bandwidth by more than 30%.

• On top of Biscuit, we successfully ported a version of

MySQL [23], a widely deployed DB engine. We modified

its query planner to automatically identify and offload certain

data scan operations to the SSD. Portions of its storage

engine are rewritten so that an offloaded operation is passed

to the SSD at run time and data are exchanged with the SSD

using Biscuit APIs. Our revised MySQL runs all 22 TPC-H

queries. No prior work reports a full port of a major DB

engine to an NDP system or runs all TPC-H queries.

• Our SSD hardware incorporates a pattern matcher IP

designed for NDP. We write NDP codes that take advantage

of this IP. When this hardware IP is applied, our MySQL

significantly improves TPC-H performance. The average

end-to-end speed-up for the top five queries is 15.4×. Also,

the total execution time of all TPC-H queries is reduced by

3.6×.

In the remainder of this paper, we first give the back-

ground of this work in Section II by discussing system

organizations for NDP and describing what we believe are

important for a successful NDP framework. Section III

presents Biscuit, including its overall architecture and key

design decisions made. Details of our Biscuit implementa-

tion are described in Section IV, followed by experimental

results in Section V. We discuss our research findings

in Section VI and related work in Section VII. Finally,

Section VIII concludes.

II. BACKGROUND

A. System Organizations for NDP

The concept of NDP may be exercised under various system

configurations and scenarios. In one embodiment, an entire

task may be executed within storage; consider how map

functions are dispatched to distributed storage nodes [7, 8].

In another case, a particular task or kernel of an application

(like database scan) could be offloaded to run in storage

(e.g., Oracle Exadata [24]). In yet another example, a large

dataset could be partitioned onto and taken care of by the

host computer and storage cooperatively [13]. Fig. 1 shows

various system organizations on which an NDP architecture

and data processing scenarios may be defined.

In a “direct-attached storage” (DAS) organization

(Fig. 1(a) and (b)), there are one or more SSDs attached to

a host computer. Connection between a host computer and

DAS storage is typically low latency (< 10μs), and when

bundled (i.e., multiple ports or lanes form a connection),

high bandwidth (> 3GB/s). Most recent work on active

SSD assumes a DAS organization [12–15, 20]. Compared to

Simple (Fig. 1(a)), Scale-up (Fig. 1(b)) has more aggregate

compute resources (in SSDs) as well as internal media

bandwidth.

154154

NDP could be done in a networked system organization

(depicted in Fig. 1(c) and (d)). In both cases, a host computer

may offload work to a storage node (like in the Exadata

example and Hadoop). In turn, each storage node (essentially

a server) may offload work to its local SSD(s). Optimally

partitioning and mapping a given data processing job to

heterogeneous resources is a hard challenge, and addressing

the problem is beyond the scope of this paper. Nonetheless, a

programming and runtime framework to seamlessly integrate

host and device resources in an NDP system remains a

critical element when deploying such a system.

B. Constructing a Framework for NDP

Then, what are key ingredients needed for building a de-

sirable programming framework for NDP? We list in the

following five factors that we find are essential:

Ability to run user-written code on a device. A practical

NDP system would allow users to specify a user binary to be

dynamically loaded into a device and executed. Ideally, this

procedure should be as effortless as running a user binary on

a host system, with no need for recompiling existing SSD

firmware or dealing with low-level SSD protocols.

Abstract, yet efficient communication between host ap-
plication and storage-side tasks. Major challenges arise

if application programmers have to deal with low-level

communication between a host and an SSD. Therefore,

a desirable NDP framework must offer an abstraction of

data communication between the parties with well-defined

semantics.

Efficient resource utilization in runtime. Runtime on an

NDP device must utilize resources in an efficient manner.

In many SSDs, resources that could be appropriated toward

near-data computation are limited. To ensure performance

and wider applications, the runtime must carefully conserve

its use of compute resources, on-chip/off-chip memory ca-

pacity, DMA channels, and memory bandwidth.

Intuitive, high-level programming. Support for high-level
language as well as a complete application programming

interface are desired, to increase programming productivity

and reduce errors. This requirement may complicate runtime

implementation on an embedded device, however.

Safety. Lastly, ensuring safety of the overall system is

important. For example, ill-behaving user code must not ad-

versely affect the overall operation of an SSD or compromise

the integrity of data that belong to a different user. Lack

of certain hardware features within an SSD may present

challenges to enforcing safety policies.

III. BISCUIT

A. System Architecture and Overview

A basic Biscuit system is comprised of at least two physical

components: A host system and one or more SSDs (like

Simple and Scale-up of Fig. 1). It equally applies to storage

nodes that connect to SSD devices in a networked system

����

��������	
���
���

��������������

����

���	
����	����	
����	�

���� ����

����

�
�
��

�
�
�	
��
�
�	

�
�
�
��
�
��
	
�

���

���

 ��!��	

���

 ��!��	
"���#��
�#�$�	

�������	
���#�	

����	�����	� ����	�����	� ����	�����	�

�����

%%�
���� ����&

�����	�
'(
)��

���� ����&

�����	�
'*����+,)��
����

�	���-

�-��	�

�
	��
��.	
./)

����!��	

��0	��
�����	�

Figure 2. Overall architecture of a Biscuit system.

(Networked and Scale-out). On such physical platforms,

Biscuit provides an environment and programming model

for host-side and SSD-side tasks to work together.

Fig. 2 depicts the overall Biscuit system architecture.

A Biscuit system has distributed software modules and a

hardware platform—a host computer and an SSD. Biscuit

turns the host and the SSD into a seamless application

execution environment with the help of a dedicated runtime

on the SSD and a set of high-level APIs offered by Biscuit

libraries. These APIs collectively reflect the programming

model. An important principle in the Biscuit programming

model is separation of computation model and coordination
model, as shown in Fig. 3. The computation model governs

how to describe a task unit by specifying computation

using its input and output data. On the other hand, the

coordination model has to do with creating and managing

tasks, and establishing producer and consumer relationship

among tasks by associating their inputs and outputs. Biscuit

follows the flow-based programming (FBP) model [21] for

its coordination model, but allows more general data types

for data communication with C++11 move semantics, in

addition to the information packet type of FBP. Biscuit is

designed as an in-storage compute framework. Compared to

a host system, SSDs have high internal I/O bandwidth but

��������	
���
���

�������������

���		�
�� ���

�����

����	
�
��

��������������

���	������

���	

���	

�������	
���
		

�����
�����

�����

�������

�������

Figure 3. Biscuit programming model.

155155

class Filter : public SSDLet<IN_TYPE<int32_t>,
OUT_TYPE<int32_t, bool>, ARG_TYPE<double>> {

public:
void run() override {

auto in = getInputPort<0>();
auto out0 = getOutputPort<0>();
auto out1 = getOutputPort<1>();
double& value = getArgument<0>();

// do some computation
}}

Code 1. An example to illustrate SSDLet interface.

relatively low compute power. Thus, Biscuit fits perfectly

into data-centric workloads and can achieve maximum per-

formance by offloading a set of simple data-intensive tasks to

SSDs and retrieving intermediate/final computational results

only. This programming model is well represented by FBP.

Additionally, Biscuit employs more aggressive type check-

ing at compile and run time.

The computation model and the coordination model are

realized in the libslet and libsisc libraries with corresponding

interfaces provided to users. libslet is used to build SSD-

side modules, which may contain multiple binary images of

SSD-side tasks. A host-side program is composed of code

to invoke and coordinate execution of SSD-side tasks using

libsisc, and code for host-side computation.

B. SSDlet and Application

An SSDlet is a simple C++ program written with Biscuit

APIs, and is typically embedded inside an SSDlet module.
It is a unit of execution independently scheduled, and

represented by the SSDLet class. Both libslet and libsisc

have this class. SSDLet of libslet is used to define an SSDlet.

As shown in Code 1, SSDLet::run is the core method that

describes the execution of an SSDlet, and is called when

a host-side program orders SSDlets to begin execution. In

contrast, SSDLet of libsisc is a proxy class acting as an

interface to SSDLet instances on an SSD.

In addition to deriving their own SSDlets from SSDLet
and overriding SSDLet::run, programmers should parame-

terize the SSDLet class to add I/O ports to the SSDlet

(as will be explained further in Section III-C), or pass

initial arguments to it. The SSDLet class is a template class

with three type parameters, as listed in Code 1, IN_TYPE,
OUT_TYPE, and ARG_TYPE. Biscuit provides underlying

facilities for the programmer to easily declare parameter and

retrieve arguments, as well as to inject and eject data through

I/O ports.

A group of SSDlets that run cooperatively (e.g., Mappers,

Shuffler, and Reducers in Fig. 5) are represented by Ap-
plication. With this class, a host-side program coordinates

operations on SSDLet instances by asking them to establish

connections among them and start execution. Biscuit can

load multiple applications and run them together, either

cooperatively or independently.

�

�

���������
������	

����

���
���������	�

����

�������	

��
������
�
��
������

����

������

������

���

���

���

Figure 4. InputPort and OutputPort.

C. I/O Ports

Upon successful creation of all SSDlet instances, data trans-

mission among them is achieved by simply linking input and

output ports as shown in Fig. 4. Biscuit has three different

port types:

(a) Inter-SSDlet ports transfer data among SSDlet instances

belonging to a single Application instance. They support

almost all data types except pointer and array types. Single
producer multiple consumer (SPMC) and multiple producer
single consumer (MPSC) connections are allowed among

SSDlet instances in addition to single producer single con-
sumer (SPSC) connection.

(b) Host-to-device ports transfer data between an SSDlet

instance and a host program. They support a sole data type,

namely, Packet. To transfer data of other types, data should

be convertible to/from Packet by explicit serialization/dese-

rialization functions. This port type only allows the SPSC

connection.

(c) Inter-application ports transfer data between two SSD-

lets from different Application instances. Similar to the host-

to-device ports, they only support the Packet data type, or

require that data be serializable and deserializable. Again,

this port type only allows the SPSC connection.

Biscuit API is strongly typed and implicit type conversion

is not allowed. Thus, users must connect different ports of

identical data type. For example, they cannot connect a string

output to a numeric input. Every data transmitted between

a host-side program and an SSDlet or between SSDlets of

different applications must be (de)serializable. Our design

choices promote type checking during compile time, giving

programmers opportunities to fix errors early.

D. File I/O

One of the key strengths of Biscuit is simplicity in handling

files. File access APIs are nearly identical to ones in standard

libraries, and thus provide users with a flexible interface in

familiar semantics. Note that Biscuit prohibits SSDlets from

directly using low-level, logical block addresses and forces

the SSD to operate under a file system when SSDlets read

and write data.

Similar to an SSDlet, files are represented as File classes

in both libsisc and libslet. A host-side program creates file

instances with File of libsisc and passes them to an SSDlet

either as arguments or via ports. Using File of libslet, the

156156

������������ ��		����		��

��	���
��	���

��	���
��	���

�������	�
��

���

�����	������	��

	��

��

���������
�������

����

����

����

�������

�
��

�������

�
��

������������

������������

Figure 5. Biscuit programming example: Wordcount.

SSDlet can read/write passed file instances. This separation

of functionality ensures that access permission of an SSDlet

to files is inherited from that of the associated host program.

The File class supports both synchronous and asyn-

chronous APIs for reading, while an asynchronous write API

and a synchronous flush API are provided for writing data.

If an application program requires high bandwidth file I/O,

asynchronous APIs are recommended.

E. Working Example: Wordcount

Before closing this section, let us consider a wordcount

application as a working example. Wordcount is a canon-

ical MapReduce example where Mapper(s), Shuffler(s), and

Reducer(s) count the frequency of each word in a given input

file in a parallel, distributed manner. As shown in Fig. 5, it is

composed of a host-side program and a wordcount module

with Mapper, Shuffler, and Reducer SSDlets.

The Mapper class in Code 2 is an implementation of

Mapper. It takes a file as an argument and passes tokenized

words to Shuffler. Lastly, it is registered in its container

module by RegisterSSDLet so that a host-side program can

create proxies of this class with a registered identifier.

Code 3 is a host-side implementation of wordcount. First,

it specifies the target device with an SSD instance, and loads

the wordcount module on it. Second, it creates an Application
instance and proxy SSDLet instances. Each SSDLet instance
is instantiated by an identifier (e.g., idMapper), and acts as

an interface for an SSDLet instance whose class is registered
with this identifier. Then, it establishes connections among

tasks with Application::connect and Application::connectTo.
Calling Application::start makes sure that all SSDlets begin

execution after their communication channels are completely

set up. Then, by calling the InputPort::get, it gets the word-

frequency pairs from Reducer and prints them out.

IV. IMPLEMENTATION

A. SSD Hardware

The target SSD used in this work is a state-of-the-art

commercial product, depicted in Fig. 6. Specification of our

SSD is summarized in Table I. Additional details that pertain

to our design and implementation trade-offs are:

class Mapper : public SSDLet<OUT_TYPE<std::pair<std::string, uint32_t>>,
ARG_TYPE<File>> {

public:
void run() {

auto& file = getArgument<0>();
FileStream fs(std::move(file));
auto output = getOutputPort<0>();
while (true) {

...
if (!readline(fs, line)) break;
line.tokenize();
while ((word = line.next_token()) != line.cend()) {

// put output (i.e., each word) to the output port
if (!output.put({std::string(word), 1})) return;

}}}};

RegisterSSDLet(idMapper, Mapper) // register class in its container module

Code 2. An example SSDLet class: Mapper.

int main(int argc, char *argv[]) {
SSD ssd("/dev/nvme0n1");
auto mid = ssd.loadModule(File(ssd, "/var/isc/slets/wordcount.slet"));

// create an Application instance and proxy SSDLet instances
Application wc(ssd);
SSDLet mapper1(wc, mid, "idMapper", make_tuple(File(ssd, filename)));
SSDLet shuffler(wc, mid, "idShuffler");
SSDLet reducer1(wc, mid, "idReducer");
...
// make connections between SSDlets and from Reducers back to the host
wc.connect(mapper1.out(0), shuffler.in(0));
wc.connect(shuffler.out(0), reducer1.in(0));
auto port1 = wc.connectTo<pair<string, uint32_t>>(reducer1.out(0));
...
// start application so that all SSDlets would begin execution
wc.start();
pair<string, uint32_t> value;
while (port1.get(value) || port2.get(value)) // print out <word,freq> pairs

cout << value.first << "\t" << value.second << endl;

// wait until all SSDlets stop execution and unload the wordcount module
wc.wait();
ssd.unloadModule(mid);
return 0;

}

Code 3. An example host-side program: Wordcount.

• The SSD has two types of memory: A small fast memory

(on-chip SRAM) and a large slow memory (DRAM).

• The SSD has memory protection units (MPUs) but no

memory management units (MMUs).

• The SSD partially supports LDREX and STREX in-

structions [25], which introduces restriction on using some

synchronization primitives.

• Each flash memory channel of the target SSD has a hard-
ware pattern matcher. If an SSDlet requests a read operation

on a large data chunk with the pattern matcher turned on,

the request is distributed to multiple flash memory channels,

and the data will flow through the pattern matchers on those

channels in parallel. The raw pattern matching throughput

corresponds to the throughput of the flash memory channels.

Hardware limitations—less-than-ideal compute power, no

cache coherence, a small amount of fast memory, no MMU,

and restrictive synchronization primitives—pose challenges

to efficient realization of our runtime on this platform while

we strive to meet all requirements of the programming

model.

157157

��������������

����������������������������

123123312323� 	� 	� 	� 	�

						�
		 ��

�����

123��	
	���

�
�

��
�
�

��
2
�

��
�
�2��
�
������������
�

Figure 6. The SSD hardware. Only one side is shown.

B. Biscuit Runtime

Biscuit system components span a host system and an

SSD (see Fig. 2). The primary features of Biscuit are

multithreading support, efficient data communication, dy-

namic module loading, and dynamic memory allocation. The

Biscuit runtime centrally mediates access to SSD resources

and has complete control over all events occurring in the

framework.

Cooperative Multithreading. At the request of a host-

side program, the Biscuit runtime loads modules on SSDs,

instantiates SSDlets, and coordinates their execution. To

execute multiple SSDlet instances concurrently, we employ

cooperative multithreading [26]. Whenever an SSDlet in-

stance is created, it is assigned a fiber (a scheduling unit) and

then the fiber executes SSDLet::run of the SSDlet instance.

Cooperative multithreading is a limited form of general

multithreading in that context switching occurs only in

explicit yield calls or blocking I/O function calls. This aspect

has several advantages over fully preemptive multithreading,

such as very low context switching overhead and resource

sharing without locking.

For multi-core support, Biscuit uses applications as a unit

of multi-core scheduling instead of SSDlets. This means

that all SSDlets in an application are guaranteed to run on

the same processor. It has a considerable influence on the

implementation of I/O ports, which will be explained next.

I/O Ports as Bounded Queues. As explained in Sec-

tion III-C, all data transmission except file I/O is done

through ports. Biscuit extensively uses bounded queues to

implement ports. When the host program makes a connec-

tion between an output port and an input port, Biscuit creates

Table I
SSD SPECIFICATION.

Item Description

Host interface PCIe Gen.3 ×4 (3.2GB/s max. throughput)
Protocol NVMe 1.1
Device density 1 TB
SSD architecture Multiple channels/ways/cores
Storage medium Multi-bit NAND flash memory
Compute resources Two ARM Cortex R7 cores @750MHz

for Biscuit with L1 cache, no cache coherence
Hardware IP Key-based pattern matcher per channel

a bounded queue and associates each port to both end-points

of the queue. Sending and receiving data is achieved by

simple enqueue and dequeue operations on the queue.

Complex connections like SPMC and MPSC are elegantly

realized with a shared queue. No lock is needed in imple-

menting SPMC and MPSC, because they are supported only

in inter-SSDlet ports and the fibers corresponding to those

SSDlets are executed on the same processor.

Unlike inter-SSDlet ports, other ports are allowed only

an SPSC connection. This is not only a design policy but

also a result from the limitation of the target SSD; the

SSD does not provide a complete set of synchronization

primitives needed to implement multiple producer and mul-

tiple consumer queues. In case of host-to-device ports and

inter-application ports, producers or consumers may run on

different processors and simple bounded queues are not

thread-safe any longer.

The host-side and device-side channel managers are a

mediator for data transfer between a host program and

SSDlets. Bounded queues for host-to-device communication

are encapsulated in channels. Each channel has three queues:

One for incoming data and two for outgoing data. To

maintain channels in memory for efficient re-use as well

as to limit the total number of channels simultaneously

used, channel managers create their own channel pool.

All requests from a host-side program to SSDlets and the

corresponding responses are encapsulated in channels and

transmitted by a host interface protocol.

Dynamic Module Loading. SSDlets must be compiled and

linked with libslet into an SSD-side module. Libslet is in

charge of bridging the Biscuit runtime and SSDlet instances.

When an SSDlet instance is created, it gets a function table

from the runtime. This table contains one pointer entry for a

function or a software interrupt. SSDlets require a collection

of functions to perform their tasks, including key functions

like memory allocation and I/O. On the other side, Biscuit

also needs functions to create and manage SSDlet instances.

Even though our target SSD does not support MMU or

virtual memory, Biscuit can create multiple SSDlet instances

from one SSDlet binary because it performs symbol reloca-

tion and locates each one in a separate address space when

creating an SSDlet instance.

Dynamic Memory Allocation. Biscuit supports dynamic

memory allocation. Our current implementation builds on

Doug Lea’s memory allocator [27]. Biscuit maintains two

kinds of memory allocators by default, system memory
allocator and user memory allocator. The system memory

allocator is used when the runtime allocates memory space

and instantiates dynamic objects. Memory spaces used by

the system memory allocator are restricted to Biscuit, and

SSDlet instances are prohibited from accessing them. The

user memory allocator is for securing memory spaces ac-

cessible by SSDlet instances.

158158

C. Host-side Library

As explained in Section III, host programs are linked

with the libsisc library. It has a layered architecture; at

the bottom of libsisc is a host-to-device communication

layer, comprised of a channel manager and its components

specialized for different host interface protocols (like NVMe

or Ethernet). The channel manager is in charge of manag-

ing multiple independent communication channels between

libsisc and the Biscuit runtime. Using the channel manager,

libsisc maintains a single control channel and creates one

or more data channels on demand. The classes provided for

programmers, such as SSD, Application, and SSDLet, reside
on top and are implemented using the control channel. Data

channels are given to input/output port instances for data

communication.

V. EXPERIMENTS

This section presents experimental results to illustrate poten-

tial benefits of Biscuit in data-intensive workloads. Results

are presented in two parts, basic performance and application

level performance. Note that our main goal in presenting

performance numbers is not to uncover theoretical maximum

performance gains NDP can bring per se. Rather, we present

measured numbers on a real system, and the presented

numbers reveal what design aspects affect overall system

performance and how. Our goal is then to obtain insights into

how to derive better NDP architectures and better system

design strategies.

A. Experimental Setup

All experiments are performed on a target platform com-

prised of a Dell PowerEdge R720 server system [28] and

our target SSD (Section IV-A). The server system sports

two Intel Xeon(R) CPU E5-2640 (12 threads per socket)

@2.50GHz and 64 GiB DRAM. 64-bit Ubuntu 15.04 is

chosen as the system OS. Relevant details of our target

SSD are listed in Table I. We note that the SSD is equipped

with a hardware pattern matcher, designed specifically for

NDP. Given at most three keywords, each of which is up

to 16 bytes long, the pattern matcher looks them up in

a configurable amount of data retrieved from the storage

medium. In the rest of this section, we call the system

configuration with a default, conventional SSD as Conv and

the system configuration with the Biscuit framework on the

SSD as Biscuit. Unless specified, measurements are made on

an unloaded system.

B. Basic Performance Results

The basic performance is measured in latency of port

communication and read operation. It is also measured in

bandwidth of read operation. We measure the communica-

tion latency involved in transmitting data in the Packet type
via three different I/O port types of Biscuit (Section III-C).

The read latency simply measures the amount of time taken

Table II
MEASURED LATENCY FOR DIFFERENT I/O PORT TYPES.

Host-to-device Inter-SSDlet Inter-app.H2D D2H

Latency (μs) 301.6 130.1 31.0 10.7

for a single read request to be completed. While it is a round-

trip time from the host system back to the host system for

Conv, it is a round trip time from and to an SSDlet in the

case of Biscuit (i.e., “internal read”). The read bandwidth

measures the amount of data transferred in a given time

during read I/O operations. Again, it is internal read in the

case of Biscuit. It is measured and presented as a function

of read request size.

Communication latency. The measured communication

performance is shown in Table II for the three I/O port types.

The communication performance between the host and the

device is further divided into two categories depending on

the direction of transmission, namely, host-to-device (H2D)

and device-to-host (D2H). All reported latencies include

a scheduling latency involved in the context switching of

fiber (Section IV-B) in common, which is dominantly shown

in the case of inter-application latency. The inter-SSDlet

latency is longer than the inter-application latency by 20.3

μs, which is due to the type abstraction and de-abstraction

process involved in the inter-SSDlet port. The host-to-device

communication latency includes not only the latency caused

by queuing and dequeuing in the channel manager, but

also the latency caused by low-level hardware (PCIe) and

software (device driver). With these latencies accumulated,

the host-to-device communication latency reaches 130.1 μs

and 301.6 μs, respectively for D2H and H2D. Our result

shows that the H2D latency is longer than the D2H latency;

in our implementation, the channel manager has about twice

the work to do in the receiver side compared to the sender

side. Because CPUs in the target SSD are limited in compute

power, the H2D latency is noticeably longer.

While we find that there is room for architecture and soft-

ware optimizations (e.g., clock frequency scaling, protocol

optimization), the basic performance of our framework is

adequate for a range of applications we examine.

Data read latency. The read latency of Conv is measured

using Linux pread I/O primitive. As for Biscuit, we use its
internal data read API. Table III shows the measured read

latency for completing a single 4-KiB read request. There is

a difference of 14.1 μs, yielding about 18% shorter latency in

the case of Biscuit. Part of the difference is attributed to the

shorter round-trip “path”—there is no need for transmitting

data from the device to the host over a host interface. Note

that the relative latency difference is expected to grow if the

Table III
MEASURED DATA READ LATENCY.

Conv Biscuit

Latency (μs) 90.0 75.9

159159

Figure 7. Bandwidth of synchronous (left) and asynchronous (right) read operations as a function of request size.

storage medium latency decreases, e.g., with a single-level

cell NAND flash memory or emerging storage-class memory

like phase-change RAM or resistive RAM. For example, if

the storage medium latency approaches 1 μs, the relative

latency difference between Conv and Biscuit will grow to

over 40% even if everything else is kept same. As will be

shown later, the read latency serves as an important measure

for the understanding of pointer chasing performance.

Data read bandwidth. In this experiment, we measure the

bandwidth of synchronous and asynchronous read opera-

tions. Synchronous read processes read requests one at a

time, while asynchronous read overlaps processing of mul-

tiple read requests. Because asynchronous read eliminates

the effect of idle time between successive read requests, it

reaches maximum possible bandwidth more quickly.

Fig. 7 plots the measured bandwidth of synchronous

read (left) and asynchronous read (right). For asynchronous

read, up to 32 concurrent (or outstanding) read requests are

used. As the read request size is increased, the achieved

bandwidth increases rather steeply at the beginning and

starts to level off gradually. Notice that the maximum

bandwidth is achieved more quickly with asynchronous read;

the bandwidth limit is reached as early as at a request size of

about 500 KiB. In the case of synchronous read, bandwidth

appears to still increase even when requests are 4 MiB or

larger.

It is distinctively shown that maximum achievable band-

width is limited by the host interface for Conv (at around 3.2

GiB/s with PCIe Gen.3 ×4). However, such limitation is not

present in the case of Biscuit and the underutilized internal

bandwidth is fully exploited, outperforming Conv by about

1 GiB/s at a request size of 256 KiB or larger in the case

asynchronous read. The gap between Biscuit bandwidth and

Conv bandwidth can grow if there are other interferences in

play, such as fabric bottleneck (e.g., there are many SSDs

on a switched PCIe fabric) or a heavy CPU load.

The plot also shows Biscuit’s internal bandwidth when

the hardware pattern matcher (per flash memory channel) is

enabled. It lies between Conv and pure Biscuit; the pattern

matching bandwidth is lower than without pattern matching

because the configuration incurs software overheads for

controlling hardware IP. On the other hand, this bandwidth

is still higher than Conv, and underscores the capability and

advantage of having a hardware IP for fast data processing.

C. Application Level Results

Pointer Chasing. Pointer chasing is a key primitive op-

eration of data-dependent logic. Graph traversal, for ex-

ample, is essentially done by numerous repeated pointer

chasing operations [29]. In such scenarios, read latency is

critical since performing each data-dependent logic requires

a round-trip operation between the host and the storage

system. With NDP, a full host-to-device-to-host round-trip

delay as well as corresponding host CPU cycles are avoided

by performing data-dependent logic entirely within a storage

device. To evaluate the potential of this approach, we write

and experiment with a simple pointer chasing benchmark

on a relational DB built with Neo4j [30]. The DB is derived

from the Twitter datasets [31] that contain 42 million vertices

of user profiles and 1.5 billion edges of social relations,

out of which we randomly choose 100 starting nodes for

traversal. The generated dataset is approximately 20 GiB.

In order to reveal the benefit of NDP more realistically,

we repeat experiments under various system load levels

generated by simultaneously running multiple threads of

StreamBench [32].

Table IV gives the measured time for performing the

pointer chasing benchmark on Conv and Biscuit. With Bis-
cuit, the execution time is reduced from 138.6 to 124.4 in

seconds, achieving at least an 11% performance gain. This

gain is comparable to the improvement in read latency with

Biscuit. In fact, as alluded to the point earlier, pointer chasing
performance is directly related to read latency since the exe-

cution time is essentially the sum of individual time needed

Table IV
EXECUTION TIME FOR POINTER CHASING.

#threads 0 6 12 18 24

Exec. Conv 138.6 143.5 152.5 154.9 155.0
time (s) Biscuit 124.4 124.0 123.3 123.9 123.5

160160

for subsequent read operations. Hence, the relative gain will

grow if the storage medium latency becomes smaller. It is

also shown that the Conv performance is degraded as we

increase the system load due to higher contention in the

memory hierarchy. As expected, the Biscuit performance is

fairly insensitive to the system load, possibly reducing tail

latency and benefiting the system responsiveness.

Simple String Search. We now turn to cases where we can

leverage the hardware pattern matcher in the target SSD. To

demonstrate the effect of hardware accelerated matching, we

write a utility application that performs simple string search

on a large compilation of web-log amounting to 7.8 GiB. For

Conv, we use Linux grep, which implements the Boyer-

Moore string search algorithm [33].

As seen in Table V, there is a minimum of 5.3× improve-

ment with Biscuit. It is shown that the performance of Conv
is highly affected by the system load, whereas Biscuit is

robust. As a result, the relative improvement becomes larger

as we increase the system load. The maximum improvement

reaches 8.3× when 24 StreamBench threads are running in

the background. This large improvement comes from the

fact that Biscuit sustains high, on-the-fly search throughput

within the SSD thanks to the hardware pattern matcher.

While the presented string search application is simple, the

idea can easily be extended to many other applications in

big data analytics that involve scanning and searching a large

corpus of data (e.g., grep, html/xml parsing, table scan), with

great potential for significant performance gains.

DB Scan and Filtering. The last application we examine

is data analytics with a real DB engine. We chose MariaDB

5.5.42 [23] (an enhanced fork of MySQL, known to be in use

at Google), with its default storage engine called XtraDB. In

order to accelerate data analytics on this platform, we rewrite

portions of MariaDB using Biscuit APIs. Specifically, we

modified the query planner of MariaDB to (1) automatically

identify within a given query a candidate table with filter

predicates amenable for offloading; (2) perform quick check

on the table to estimate selectivity using a sampling method,

(3) determine whether the candidate table is indeed a good

target (based on a selectivity threshold), and finally (4)

offload the identified filter to the SSD. We also reorganized

XtraDB’s datapath for passing an offloaded operation to the

SSD and for exchanging data between the host system and

the SSD. Here, selectivity of filter predicates against a base

table is calculated as a fraction of pages that satisfy filter

conditions from the total number of pages in the table. The

value of selectivity ranges from zero to one, with zero being

the highest selectivity value. This implies that no pages

Table V
EXECUTION TIME FOR STRING MATCHING.

#threads 0 6 12 18 24

Exec. Conv 12.2 14.8 16.3 18.8 19.9
time (s) Biscuit 2.3 2.3 2.3 2.3 2.4

Figure 8. Performance of SQL queries on lineitem table.

will be selected from the table (best case for NDP). As a

benchmark dataset, we populated TPC-H dataset [34] at a

scale factor of 100. Once loaded into the DB, it becomes

nearly 160 GiB in total. In the first experiment, we choose

to run two filtering queries from a recent related work [35]

for illustration:

<Query 1>
SELECT l_orderkey, l_shipdate, l_linenumber
FROM lineitem
WHERE l_shipdate = ’1995−1−17’

<Query 2>
SELECT l_orderkey, l_shipdate, l_linenumber
FROM lineitem
WHERE (l_shipdate = ’1995−1−17’ OR l_shipdate = ’1995−1−18’)

AND (l_linenumber = 1 OR l_linenumber = 2)

The first is a simple query with a single filter predicate,

and the second has a more complex WHERE clause. Above

queries have a selectivity of 0.02 and 0.04, respectively, for

the l_shipdate predicate(s). Thus, both queries are charac-

terized by a high filtering ratio with a low computational

complexity.

Fig. 8 gives the result. The error bars indicate a 95%

confidence interval. In the case of Conv, execution time var-

ied significantly across ten repeated experiments, depending

on CPU and cache utilization in the system. On the other

hand, execution times on Biscuit were very consistent. As

shown, Biscuit achieves the speed-up of about 11× and 10×
for the two queries studied. Query 1 sees a slightly greater

performance gain as the selectivity is higher (i.e., higher

filtering ratio). It is important to point out that performance

gain would depend highly on the selectivity in a given query,

which is expected since the lower the rate of device-to-host

transmission is, the higher the benefit of NDP can be. Similar

to the simple string search application, the performance

gain mainly comes from the large internal bandwidth of

Biscuit, as well as the rapid scanning of the dataset by the

hardware pattern matcher. Together with the high filtering

ratios, Biscuit reduces the amount of data to transfer over a

host interface significantly. The result clearly demonstrates

the potential of the Biscuit approach to substantially improve

query processing in modern big data workloads.

Power Consumption. Fig. 9 shows the measured power

consumption in Watts during the execution of Query 1 as

161161

Figure 9. Measured system power consumption during the execution of
Query 1.

Table VI
OVERALL ENERGY CONSUMPTION.

Conv Biscuit

Total Energy (kJ) 60.5 12.2

a function of time. This power is of the whole system

including the server and the target SSD. As already shown in

Fig 8, the execution time of Biscuit is markedly shorter.2 The

power consumption in both cases grows rapidly as the query

processing begins. The average system power consumption

with Conv and Biscuit are measured as 122 Watts and

136 Watts, respectively during query execution, whereas the

system’s idle power is 103 Watts. Biscuit consumes more

power because it keeps SSD busy consuming nearly full

bandwidth during query processing. Comparatively, Conv
does not utilize the full bandwidth of the target SSD due

to inefficiency in query processing logic and I/O. Biscuit
achieves substantially lower energy consumption than Conv
thanks to its significantly reduced execution time. Table VI

shows that Biscuit consumes nearly 5 times less energy for

Query 1.

TPC-H Results. Finally, let us present and discuss the full

TPC-H execution results collected on the MariaDB system.

We ran all 22 queries in the TPC-H suite [34]. TPC-H is

the de facto industry standard for OLAP performance.

Fig. 10 gives our results, sorted by speed-up. Among

all queries, there are eight queries that MariaDB does not

attempt to leverage NDP because there is no proper filter

predicate in the query (Q1, Q7, Q11, Q13, Q18, Q19, Q21,

and Q22). In the case of Q1, Q7, Q11, and Q21, the query

planner gives up NDP because it expects the selectivity to be

very low (e.g., predicate is a single character) or the target

table size is too small. Other queries are considered not a fit

due to limitations of our hardware pattern matcher (e.g., it

can’t handle the “NOT LIKE” predicate condition) or there is

2The plot shows that the system does not go back immediately to the
idle mode after query execution is finished. There is extra work performed
(e.g., synchronizing the buffer cache). To be fair, we include this period in
calculating power/energy consumption.

Figure 10. TPC-H results

no filter predicate at all in one case (Q18). There are also six

queries for which our sampling heuristic advises MariaDB

not to offload filtering because of low selectivity. Hence,

relative performance of these 14 queries is simply 1.0.

For the eight queries that leverage NDP, we saw mean-

ingful speed-ups, correlated with the I/O reduction ratios

shown together. This ratio is calculated by dividing the

number of pages read by Conv with that of Biscuit. The
average (geometric mean) speed-up of the eight queries is

as high as 6.1×. Five of those queries observe a significant

improvement of 2.8× or more with the average speed-up of

15.4×. For five queries, we obtained surprisingly high speed-

ups; for example, Q14 exhibited a speed-up of 166.8×. The

reason for such a large performance gain is because the

effect of early filtering is magnified in the case of complex

join operations [36]. Unlike the original MariaDB policy of

choosing the smallest table first in a nested join operation,

our query planning heuristic (implanted in MariaDB) places

a filter table that is the NDP target first in the join order.

By doing so, our system greatly reduces the number of

intermediate row sets that must be read from the SSD and

examined by the DB engine (because many rows in the first

table have been discarded already). There was a 315.4×
reduction of I/O traffic in the case of Q14.

When running all 22 queries, Conv takes nearly two days,

while Biscuit finishes in about 13 hours. In terms of total

query execution time, Biscuit beats Conv by a factor of 3.6×.

The top five queries were found to take more than 70% of

the total query execution time.

VI. DISCUSSIONS

Based on our results and experiences, we make several

observations, findings and remarks.

Costs of an NDP framework. We find both sound design

choices and careful system optimizations play an extremely

important role in realizing a successful NDP system. For

us, the task of designing Biscuit required examination of

162162

many different programming models and their implemen-

tation costs on an embedded platform, given the set of

design priorities we had (Section II-B). When it came to

system optimization, most metrics we present in Section V-B

improved by 2× to over 50×, compared to an early feature-

complete implementation. We also managed to keep the

Biscuit runtime’s footprint small; the binary size of Biscuit

is only 313 KiB (single-core config.) or 553 KiB (dual-core

config.).

Basic performance of the Biscuit runtime shows that there

is no significant performance degradation due to the runtime.

This is not surprising because it adds no complications to

handling I/O and managing media, albeit running on top of

heavily engineered SSD firmware. All I/O requests issued by

Biscuit go through the same I/O paths with normal I/O re-

quests, and the underlying SSD firmware takes care of media

management tasks such as wear leveling and garbage collec-

tion. While there is room for further improvement (e.g., the

I/O port communication latency), non-trivial improvements

are seen in the read latency and bandwidth, compared to

a conventional host-level SSD I/O. Such improvements are

the result of tight integration of Biscuit with the existing

firmware. Gains in the read operation match well with our

expectation for an NDP architecture that both latency and

bandwidth benefit from removing data transfer over a host

interface.

Is NDP for all? It is logically clear that not all applications

would benefit significantly from NDP. There are several

conditions that must be met to make a given application

a good fit for NDP. First, the application must have data

processing tasks that deal with stored data; it makes little

sense to migrate a task to an SSD that does not even touch

SSD data. Second, the I/O and compute patterns of those

tasks must possess certain characteristics; prior and our work

identify that tasks having data dependent logic (i.e., I/O

processing and light-weight compute alternate) and high-

bandwidth I/O with simple scanning (i.e., instructions to

process unit data are few) could benefit from NDP. If the

application logic can be revised to take advantage of new

execution profiles of offloaded tasks (e.g., new DB query

planning heuristic), chances are that NDP benefits become

even more tangible.

On our current implementation of Biscuit and the target

SSD, improvement obtained for the pointer chasing applica-

tion is nice but not spectacular. On the other hand, the simple

string search and TPC-H applications saw a large speed-up

(that cannot be matched by straightforward host software

optimizations) by fully exploiting the high SSD-internal

bandwidth and hardware pattern matcher in the target SSD.

As such, we recognize and emphasize the importance of

effective architectural support for successful NDP system

design. Our results corroborate earlier findings [13, 22] that

hardware support is instrumental in boosting the perfor-

mance of data-intensive workloads. Such support will be

even more critical as both external bandwidth and internal

SSD bandwidth increase. Software optimizations on embed-

ded processors can’t simply keep up. Addressing limitations

mentioned in Section IV-A is also highly desirable.

Importance of an NDP programming model. We feel

that it is Biscuit’s programmability and expressiveness that

allowed us to explore versatile applications in this work,

from pointer chasing to database scan and filtering with rel-

atively straightforward design and coding. With full C++11

features and standard libraries, the amount of user code

in SSDlets for an application barely exceeds 200 lines.

Given the complexity of these applications and the level of

improvements obtained, the coding effort is unprecedentedly

low.

Moreover, none of the applications we wrote required any

modification to the SSD firmware. With Biscuit in place, one

only needs to worry about the target application itself and

writing SSDlets properly in the host side and the device side.

This aspect is of great advantage to developers as they do not

deal with complex internal structures and algorithms inside

SSD firmware (e.g., flash translation layer), while seeking

improvement in a data-intensive application.

NDP and RAID. RAID (redundant array of independent

disks) techniques are employed to combine and protect

multiple SSDs on some host platforms (e.g., Scale-up of

Fig. 1). Because RAID remaps logical block addresses

among storage devices, it poses challenges and limitation to

NDP. RAID 1 (i.e., replication) is less of a concern because

data are available in all disks. However, RAID 10 and 5

are harder to deal with. In this case, for successful NDP

programming, Biscuit, application, as well as SSDlets must

all be aware of data layout. For applications where order

in file contents is unimportant, one could have SSDlets

filter data and the host task process all partial results. In

general, however, RAID makes in-SSD NDP programming

substantially more complicated.

Fortunately, in large storage and data processing plat-

forms, software-driven inter-server replication and erasure

coding become increasingly popular [7, 8, 38, 39]. More-

over, for emerging NVMe SSDs, no hardware based RAID

solutions exist, and most multiple SSD deployments use

a software-defined data layout. In such systems, file and

metadata semantics are often preserved per disk. For ex-

ample, a SkimpyStash cluster [40] may allocate dedicated

metadata SSDs, and one can leverage Biscuit to accelerate

metadata traversal in those SSDs. In another example, typi-

cal Hadoop [8] and Ceph [39] deployments don’t use RAID.

We find ample opportunities for in-SSD NDP in real-world

deployments.

VII. RELATED WORK

From Active Disk to Smart SSD, there is rich literature on

storage-based NDP [9–15, 20, 41]. However, few studies

discuss their framework in usability and real implementation

163163

Table VII
COMPARISON OF PUBLISHED NDP FRAMEWORKS AND THIS WORK.

Acharya [9] Riedel [11] Kang [20] Do [12] Tiwari [14] Seshadri [15] Biscuit

NDP framework
programming model stream-

based
X event-driven session-

based
X RPC flow-based

dynamic task loading N/A N/A X X N/A X O

dynamic mem. alloc. N/A N/A X X N/A X O

language support N/A N/A C C N/A C C++11/14

Evaluation
system impl. simulator prototype

(emulation)
real SSD real SSD research

SSD
prototype
(FPGA)

real SSD

target storage hard disk hard disk
arrays

SATA SSD
(3 Gb)

SAS SSD
(6 Gb)

OpenSSD [37]
(Jasmine)

proprietary
(PCIe2)

NVMe SSD
(PCIe3)

applications simple data-
intensive
workloads

simple data-
intensive
workloads

web-log
analyzer,
data filter

MS SQL
Server
(limited)

simple data-
intensive
workloads

atomic
writes,
caching,
kvstore

MySQL
(fully

integrated)

perspectives. We show in Table VII a quick summary of their

key properties and system realization. In the next, we touch

on the most relevant prior work.

Among early active disk work [9–11], Acharya et al. [9]

give the most comprehensive programming model descrip-

tion. They adopt a stream-based programming model that is

similar to Biscuit’s flow-based one. In their model, a user

prepares disk-resident code (“disklets”) and host peers. Disk-

lets take in-disk streams (specified by file names) as input

and generate streams for a host-resident task. “DiskOS” is

the disk-side runtime that manages resources for disklets and

ensures safety of execution. Acharya et al. establish several

key concepts of a storage-based NDP system; unfortunately,

they didn’t build a real system for evaluation.

There are two independent pieces of recent work compa-

rable to ours [12, 20]. First, Do et al. [12] build an NDP

system using a real SSD. They revise a version of Microsoft

SQL Server so that selection and aggregation operators can

be pushed down to SSDs. However, their implementation

is limited and the device-side query processing code is

compiled into the SSD firmware. Kang et al. [20] extend the

Hadoop MapReduce framework to turn SSDs into distributed

data processing nodes. However, they do not provide a full-

fledged runtime, primarily limited by the hardware and SSD

firmware. Unlike these prototypes, Biscuit fully supports

dynamic task loading and unloading and dynamic mem-

ory allocation, as well as C++11 constructs and standard

libraries.

Lastly, the “Willow SSD” by Seshadri et al. [15] is a

PCIe based FPGA emulation platform. Like Biscuit, Willow

points to a system where user programmability (in a storage

device) is a first-class design goal. The reported Willow

prototype has a generic RPC interface, but little detail is

disclosed about the APIs used to write SSD-resident code.

By comparison, Biscuit is a product-strength NDP system

on commercial SSDs. Biscuit allows the user to dynamically

load user tasks to run on the SSD and focuses on how easily

one can program an NDP system, whereas Willow authors

explicitly (in the original paper) say it is not their design

goal.

There are other system examples that bear resemblance

to this work. Oracle Exadata [24] and IBM Netezza [42]

are commercial systems that take the concept of NDP into

practice. An Exadata system and Netezza offload certain

data-intensive operations like scan to its storage server and

special FPGA compute units, respectively. These systems do

not take compute to inside SSDs and are complementary to

our work. Ibex [35] employs an FPGA between a DB system

(MySQL) and SSDs to offload filter and aggregation queries.

Authors write a custom storage engine to accommodate

their FPGA design, but do not propose or study a general

framework where a user can write a new application.

VIII. CONCLUSIONS

This paper described the design and implementation of

Biscuit, an NDP framework built for high-speed SSDs. With

Biscuit, we pursued achieving high programmability on het-

erogeneous, distributed resources encompassing host CPUs

and device CPUs, as well as realizing an efficient runtime on

the device side. Our current target platform is a commodity

server and high-performance NVMe SSDs. Biscuit is the

first reported product-strength NDP system implementation

for such a target. We successfully ported Biscuit on small

and large data-intensive applications including MySQL. In

principle, there is little reason why Biscuit can’t be extended

to support task offloading between networked servers in

various system organizations (as outlined in Section II-A).

In ensuing efforts, we are extending Biscuit to incorporate

support for multiple user sessions and developing non-trivial

data-intensive applications on Biscuit.

164164

ACKNOWLEDGMENT

We thank the anonymous reviewers for their constructive

comments, which helped improve the quality of this paper.

Many researchers and individuals have contributed at various

stages to this work, including: Woojin Choi, Minwook Jung,

Yang Seok Ki, Daniel DG Lee, Chanik Park, and Man-Keun

Seo.

REFERENCES

[1] A. Halevy, P. Norvig, and F. Pereira, “The unreasonable effectiveness
of data,” IEEE Intelligent Systems, vol. 24, no. 2, pp. 8–12, 2009.

[2] R. E. Bryant, “Data-intensive supercomputing: The case for DISC,”
Tech. Rep. CMU-CS-07-128, Carnegie Mellon University, 2007.

[3] S. Brin and L. Page, “The anatomy of a large-scale hypertextual web
search engine,” in Proceedings of the 7th International Conference
on World Wide Web 7, WWW7, pp. 107–117, 1998.

[4] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn,
N. Leiser, and G. Czajkowski, “Pregel: A system for large-scale graph
processing,” in Proceedings of the 2010 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’10, pp. 135–146,
ACM, 2010.

[5] J. Han and K. Chang, “Data mining for web intelligence,” Computer,
vol. 35, no. 11, pp. 64–70, 2002.

[6] W. H. Inmon, Building the Data Warehouse. Wellesley, MA, USA:
QED Information Sciences, Inc., 1992.

[7] J. Dean and S. Ghemawat, “MapReduce: Simplified data processing
on large clusters,” in Proceedings of the 6th Conference on Symposium
on Opearting Systems Design & Implementation - Volume 6, OSDI’04,
pp. 137–150, USENIX, 2004.

[8] T. White, Hadoop: The Definitive Guide. O’Reilly Media, Inc., 1st ed.,
2009.

[9] A. Acharya, M. Uysal, and J. Saltz, “Active disks: Programming
model, algorithms and evaluation,” in Proceedings of the Eighth
International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS VIII, pp. 81–91, ACM,
1998.

[10] K. Keeton, D. A. Patterson, and J. M. Hellerstein, “A case for
intelligent disks (IDISKs),” SIGMOD Rec., vol. 27, no. 3, pp. 42–
52, 1998.

[11] E. Riedel, G. A. Gibson, and C. Faloutsos, “Active storage for
large-scale data mining and multimedia,” in Proceedings of the 24th
International Conference on Very Large Data Bases, VLDB ’98,
pp. 62–73, Morgan Kaufmann, 1998.

[12] J. Do, Y.-S. Kee, J. M. Patel, C. Park, K. Park, and D. J. DeWitt,
“Query processing on smart SSDs: Opportunities and challenges,” in
Proceedings of the 2013 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’13, pp. 1221–1230, ACM, 2013.

[13] S. Cho, C. Park, H. Oh, S. Kim, Y. Yi, and G. R. Ganger, “Active
disk meets flash: A case for intelligent SSDs,” in Proceedings of the
27th International ACM Conference on International Conference on
Supercomputing, ICS ’13, pp. 91–102, ACM, 2013.

[14] D. Tiwari, S. Boboila, S. Vazhkudai, Y. Kim, X. Ma, P. Desnoyers,
and Y. Solihin, “Active flash: Towards energy-efficient, in-situ data
analytics on extreme-scale machines,” in Presented as part of the
11th USENIX Conference on File and Storage Technologies, FAST
’13, pp. 119–132, USENIX, 2013.

[15] S. Seshadri, M. Gahagan, S. Bhaskaran, T. Bunker, A. De, Y. Jin,
Y. Liu, and S. Swanson, “Willow: A user-programmable SSD,” in
11th USENIX Symposium on Operating Systems Design and Imple-
mentation, OSDI ’14, pp. 67–80, USENIX, 2014.

[16] S.-W. Jun, M. Liu, S. Lee, J. Hicks, J. Ankcorn, M. King, S. Xu,
and Arvind, “Bluedbm: An appliance for big data analytics,” in Pro-
ceedings of the 42nd Annual International Symposium on Computer
Architecture, ISCA ’15, (New York, NY, USA), pp. 1–13, ACM, 2015.

[17] C. Li, Y. Hu, L. Liu, J. Gu, M. Song, X. Liang, J. Yuan, and
T. Li, “Towards sustainable in-situ server systems in the big data
era,” in Proceedings of the 42nd Annual International Symposium on
Computer Architecture, ISCA ’15, (New York, NY, USA), pp. 14–26,
ACM, 2015.

[18] D. Patterson, T. Anderson, N. Cardwell, R. Fromm, K. Keeton,
C. Kozyrakis, R. Thomas, and K. Yelick, “A case for intelligent
RAM,” IEEE Micro, vol. 17, no. 2, pp. 34–44, 1997.

[19] R. Balasubramonian, J. Chang, T. Manning, J. H. Moreno, R. Murphy,
R. Nair, and S. Swanson, “Near-data processing: Insights from a
MICRO-46 workshop,” IEEE Micro, vol. 34, no. 4, pp. 36–42, 2014.

[20] Y. Kang, Y. Kee, E. L. Miller, and C. Park, “Enabling cost-effective
data processing with smart SSD,” in IEEE 29th Symposium on Mass
Storage Systems and Technologies, MSST ’13, pp. 1–12, 2013.

[21] P. Morrison, Flow-Based Programming: A New Approach to Appli-
cation Development. CreateSpace, 2nd ed., 2010.

[22] S. Kim, H. Oh, C. Park, S. Cho, and S. Lee, “Fast, energy efficient
scan inside flash memory,” in International Workshop on Accelerating
Data Management Systems Using Modern Processor and Storage
Architectures, ADMS ’11, pp. 36–43, 2011.

[23] “Mariadb.” https://mariadb.org/.
[24] M. Subramaniam, “A technical overview of the oracle exadata

database machine and exadata storage server,” An Oracle White Paper,
pp. 1–43, 2013.

[25] “LDREX and STREX.” http://infocenter.arm.com/help/index.jsp?
topic=/com.arm.doc.dht0008a/ch01s02s01.html.

[26] “Cooperative threading.” http://c2.com/cgi/wiki?
CooperativeThreading, 2014.

[27] D. Lea, “A memory allocator.” http://g.oswego.edu/dl/html/malloc.
html, 2000.

[28] “dell-poweredge-r720-spec-sheet.” http://www.dell.com/downloads/
global/products/pedge/dell-poweredge-r720-spec-sheet.pdf.

[29] J. E. Hopcroft, J. D. Ullman, and A. V. Aho, Data structures and
algorithms. Addison-Wesley, 1983.

[30] “Neo4j.” http://neo4j.com.
[31] H. Kwak, C. Lee, H. Park, and S. Moon, “What is twitter, a social

network or a news media?,” in Proceedings of the 19th International
Conference on World Wide Web, WWW ’10, pp. 591–600, ACM,
2010.

[32] “STREAM: Sustainable memory bandwidth in high performance
computers.” http://www.cs.virginia.edu/stream/.

[33] R. S. Boyer and J. S. Moore, “A fast string searching algorithm,”
Communications of the ACM, vol. 20, no. 10, pp. 762–772, 1977.

[34] “Tpc-h.” http://www.tpc.org/tpch/.
[35] L. Woods, Z. Istvan, and G. Alonso, “Ibex - an intelligent storage en-

gine with support for advanced SQL off-loading,” VLDB Endowment,
vol. 7, no. 11, pp. 963–974, 2014.

[36] “Block nested loop.” https://en.wikipedia.org/wiki/Block_nested_
loop.

[37] “The OpenSSD project.” http://www.openssd-project.org.
[38] B. Calder, J. Wang, A. Ogus, N. Nilakantan, A. Skjolsvold, S. McK-

elvie, Y. Xu, S. Srivastav, J. Wu, H. Simitci, J. Haridas, C. Ud-
daraju, H. Khatri, A. Edwards, V. Bedekar, S. Mainali, R. Abbasi,
A. Agarwal, M. F. u. Haq, M. I. u. Haq, D. Bhardwaj, S. Dayanand,
A. Adusumilli, M. McNett, S. Sankaran, K. Manivannan, and
L. Rigas, “Windows azure storage: A highly available cloud storage
service with strong consistency,” in Proceedings of the Twenty-Third
ACM Symposium on Operating Systems Principles, SOSP ’11, (New
York, NY, USA), pp. 143–157, ACM, 2011.

[39] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. E. Long, and C. Maltzahn,
“Ceph: A scalable, high-performance distributed file system,” in
Proceedings of the 7th Symposium on Operating Systems Design
and Implementation, OSDI ’06, (Berkeley, CA, USA), pp. 307–320,
USENIX Association, 2006.

[40] B. Debnath, S. Sengupta, and J. Li, “SkimpyStash: RAM space
skimpy key-value store on flash-based storage,” in Proceedings of
the 2011 ACM SIGMOD International Conference on Management
of Data, SIGMOD ’11, (New York, NY, USA), pp. 25–36, ACM,
2011.

[41] D.-H. Bae, J.-H. Kim, S.-W. Kim, H. Oh, and C. Park, “Intelligent
SSD: a turbo for big data mining,” in Proceedings of the 22nd ACM
International Conference on Information and Knowledge Manage-
ment, CIKM ’13, pp. 1573–1576, ACM, 2013.

[42] P. Francisco, “IBM puredata system for analytics architecture: A
platform for high performance data warehousing and analytics,” IBM
Redbooks, pp. 1–16, 2014.

165165

