Jin-Soo Kim
(jinsoo.kim@snu.ac.kr)

Systems Software &
Architecture Lab.

Seoul National University

Spring 2019

File Systems

Storage Abstraction (Revisited)

= Abstraction given by block device drivers:

0 1 N-1

= Operations
* ldentify(): returns N
* Read (start sector #, # of sectors, buffer address)
* Write (start sector #,# of sectors, buffer address)

Source: Sang Lyul Min (Seoul National University)
4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 2

SNIA Shared Storage Model

uiuue|d Ajoeden
(" Joro-[ie}) Ajliqelere UblH |
" dnyoeq) jwbw ASuepunpay |
SVCHSTIREES 1
uoneJnbijuod ‘Jwbw 32JN0S9Yy -
Bunojuow ‘A1SA09SIg 1

record layer

Fil

urewop abeiols

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

Abstractions for Storage

= File
* A named collection of related information that is recorded on persistent storage
* Each file has an associated inode number (internal file ID)

* Inodes are unique (at a given time) within a file system

* Directory %/\
° A Iogical gl’OUP Of files bin etc home lib usr

* Hierarchical directory tree: directories \
can be placed within other directories s bl jack bin lib

* Implemented as a special file:
a list of <file name, inode humber> atxt | | t.mp3

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

Representing Files

= For each file, we have

* File contents (data)

— A sequence of bytes
— File systems normally do not care what they are

* File attributes (metadata or inode)
— File size
— Owner
— Access control lists
— Timestamps
— Block locations, ...

* File name

— The full pathname from the root specifies a file
— e.g.open(“/etc/passwd”, O _RDONLY);

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

File name

l directory

Inode nhumber

File metadata
(Inode)

|

File data

* POSIX operations

open
close
read
write
lseek
stat
fsync
link
unlink
rename
chown
chmod
flock

File Interfaces

Create a file or open an existing file

Close a file

Read data from a file

Write data to a file

Reposition read/write file offset

Get file status

Synchronize a file’s in-core state with storage device
Make a new name for a file

Delete a name and possibly the file it refers to
Change the name or location of a file

Change ownership of a file

Change permissions of a file

Apply or remove an advisory lock on an open file

6

POSIX Inode

* |[node number

= File type: regular, directory, char/block dey, fifo, symbolic link, ...
* Device ID containing the file

= User ID and group ID of the owner

= Access permission: rwx for owner(u), group(g), and others(o)

* Number of hard links

" File size in bytes

* Number of 512B blocks allocated

* Timestamps: time of last access (atime), time of last modification (mtime),
time of last status change (ctime)

Ensuring Persistence

* File system buffers writes into memory (“page cache”)
* Write buffering improves performance
* Up to 30 seconds in Linux

* sync() causes all pending modifications to filesystem metadata and cached file
data to be written to the underlying filesystem

* fsync() flushes all dirty data to disk, and metadata associated with the file and
tells disk to flush its write cache to the media too

 fdatasync() does not flush modified metadata

int fd = open(“foo”, O _CREAT | O WRONLY | O _TRUNC);
int rc = write(fd, buffer, size);

rc = fsync(fd);

close(fd);

The Big Picture

File Interfaces

—
= A
SaFTTEE

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

A Fast File System for UNIX

(M. McKusick et al., ACM TOCS, 1984)

The Original Unix FS

" First Unix file system developed by Ken Thompson

Super Inode

Data Blocks

Block List

= Super block

* Basic information of the file system

* Head of freelists of Inodes and data blocks
" |node list

* Referenced by index into the inode list

 All inodes are the same size

= Data blocks

* A data block belongs to only one file

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

11

FFS

* The original Unix file system (70’s) was very simple and
straightforwardly implemented
* But, achieved only 2% of the maximum disk bandwidth

= BSD Unix folks redesigned file system called FFS
* McKusick, Joy, Leffler, and Fabry (80’s)
* Keep the same interface, but change the internal implementation

* The basic idea is disk-awareness
* Place related things on nearby cylinders to reduce seeks
* Improved disk utilization, decreased response time

12

Unix FS: Problems

Al B2
Superm In?de Data Blocks
Block List i:! A3 A2|B1

" Files are fragmented as the file system “ages”

* Blocks are allocated randomly over the disk

* |nodes are allocated far from blocks

* Traversing pathnames or manipulating files and directories requires long seeks
between inodes and data blocks

* Files in a directory are typically not allocated in consecutive inode slots

* The small block size: 512 bytes

Bitmaps

= Use bitmaps instead of free lists

Super

IB DB Inodes Data Blocks
Block

Data Bitmap
Inode Bitmap

Each bit represents whether the corresponding inode (or data block) is free or in
use

Provides better speed, with more global view

Faster to find contiguous free blocks

Helps to reduce file fragmentation

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

14

Cylinder Groups

* Divides the disk into a number of cylinder groups

dark gray)

e.g.,

(

Single track

(yoeJ) oe|q apnjoul Jou saop dnoub isiiy ‘=N })
slapuljAd aAIIN28SU0D N JO 185
:dnour) Jepullfn

I

(10]00 Bwes yym syoe.] |e)
S9OBLINS JUBIBYIP SSOIO. 8ALIP JO
J9JUSO WOI} SOUBISIP SWES Je Syoel |
:19puljin

15

On-Disk Layout

= Put all the structures within each cylinder group

Modern drives do not export disk geometry information

Modern file systems organize the drive into “block groups”

(e.g. Linux Ext2/3/4)

Block size is increased to 4KB to improve throughput

Super block (S) is replicated for reliability reasons

Block group 0

Block group 1

Block group N-1

Ta
"y
bl]
Lx]
X]
X]
L]
]
......
"a
Ll]
"
e
"y
X]
]
ay

16

Allocation Policies

= Keep related stuff together

= Balance directories across groups

* Allocate directory blocks and its inode in the cylinder group with a low number of
allocated directories and a high number of free inodes

* Files in a directory are often accessed together
* Place all files that are in the same directory in the cylinder group of the directory
* Allocate data blocks of a file in the same group as its inode

* Data blocks of a large file are partitioned into chunks and distributed over multiple
cylinder groups

17

Other Features

Fragments to reduce internal fragmentation

* Each block can be broken optionally into 2, 4, or 8 fragments

* The block map manages the space at the fragment level

File system parameterization

* Make the next block come into position
under the disk head by skipping some blocks

Free space reserve
Long file names
Atomic rename

Symbolic links

18

Summary

" First disk-aware file system
* Cylinder groups
* Bitmaps

Replicated superblocks

Large blocks

Smart allocation policies

" FFS achieves 14% ~ 47% of the disk bandwidth

* The throughput deteriorates to about half when the file systems are full

* FFS inspired modern file systems including Ext2/3/4

19

Ext4 File System

Ext2/3/4

* Evolved from Minix filesystem
* Maximum file size: 64MB (16-bit block addresses)

* Directory: fixed-size entries, file name up to 14 chars

= Virtual file system (VFS) added

* Extended filesystem (Ext), Linux 0.96c, 1992
= Ext2, Linux 0.99.7, 1993

= Ext3, Linux 2.4.15,2001

= Ext4, Linux 2.6.19, 2006

Ext4 Features

Scalability
* Support volume sizes up to |EB
* Support file sizes up to 16TB

Extents-based mapping

Flex block group

Delayed allocation

Multi-block allocator

Directory indexing with Htree (since Ext3)

Journaling for file system consistency (since Ext3)

Ext4 Inode

* File metadata (256 bytes/inode by default)

= Pointers for data blocks or extents

mode
owners (2)
timestamps (3)
:
size block count
direct blocks :
:
— [f——ldata] =
single indirect ——-E :
double indirect =—>{ data | =|—‘ > 2——{ data |
triple indirect |_‘ :?
[=—>{ data |

Ext4 On-disk Layout

* Block group
* Similar to the cylinder group in FFS

* All the block groups have the same size and are stored sequentially

128 MB for 4KB block
|

poot Block group 0 Block group 1 S S Block group n
‘ Super Group Data block inode inode
Block Descriptors Bitmap Bitmap Table Data Blocks
1 block k blocks 1 block 1 block m blocks n blocks

(3 + k+ m + n = block size * 8)

24

Ext4 Block Group

= Superblock: file system metadata

 Total number of inodes

File system size in blocks

Free blocks / inodes counter

Number of blocks / inodes per group

Block size, ...

* Group descriptor
e Number of free blocks / inodes / directores

* Block number of block / inode bitmap, etc.

* Both superblock and group descriptor are duplicated in other block
groups

25

Ext4 Extents

= Extent <offset, length, physical block>:
A single descriptor for a range of contiguous blocks
* 32-bit logical block number: file size up to 16TB
* 48-bit physical block number: up to |EB filesystem
* |5-bit length: Max |28MB contiguous blocks

= An efficient way to represent large files
* Prevent file fragmentation

* |ess metadata information to change on file deletion

26

Ext4 Extents Tree

= Up to four extents in the inode.
Otherwise, extents tree is used.

= Extent header
e # valid entries
* # entries / node
* Tree depth
* Magic number

extd_inode

|_block

eh_header

index node

root P

-

leaf nodes

extent

disk blocks

extent index

e~

e

extent

]

extent

27

Ext4 Flex Block Groups

|||| Block Block
Group De5ﬁ|r||ptor Table Bltmap Bitmap Bitmap

N blocks 1 block * (Def. 1@ W 1 block * (Def 16))

Block Group #0 Group #1 Group #15 Group #0 Group #1 Group #15

1 block

il il Il [
Inode Table Inode Table Inode Table Data Blocks
il il ff (i
¥ Multlple blocks Multlple blocks ¥ Multlple blocks N Multlple blocks)
Group #0 Group #1 Group #15 Group #0
Il I Il
Backup GDT Data Blocks DataBlocks .
Il I [l
\ 1 block N blocks Multiple blocks JAN Multiple blocks)
Y
Group #1 Group #2

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

Ext4 Delayed Allocation

* Blocks allocations postponed to page flush time, rather than during the
write() operation

* Provides the opportunity to combine many block allocation requests into a single
request

* Reduce possible fragmentation and save CPU cycles

* Avoid unnecessary block allocation for short-lived files

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

29

Ext4 Multi-block Allocator

= Ext3 allocates one block at a time
—> Inefficient for larger 1/Os

= An entire extent, containing multiple contiguous blocks, is allocated at
once
* Reduce fragmentation
* Reduce extent metadata
* Eliminate multiple calls and reduce CPU utilization

= Stripe size aligned allocations

" Pack small files together and avoid fragmentation of free space (“per-cpu
locality group™)

30

Ext4 Directory Indexing

* Htree-based directory

32-bit hashes for keys

Each key refers to a range of
entries in a leaf block

High fanout factor
(over 500 for 4KB block)

Constant depth
(one or two levels)

Leaf blocks are identical to
old-style directory blocks

entry for . 53 16 [5]2]h o m e 1\0\O\O|
entry for .. 67 28 |3]|2]|u s r\0 |
0 16 |7[{1]oil dif i |lie\O
header . 34 |12 [312[b i n\O
hash block .
hash block ’

hash block /
hash block

31

Crash Consistency

Crash Consistency

" File system may perform several disk writes to complete a single system
call
* e.g.creat(),write(),unlink(), rename(),...

* But, disk only guarantees atomicity of a single sector write

= [f file system is interrupted between writes, the on-disk structure may
be left in an inconsistent state
* Power loss
* System crash (kernel panic)

* Transient hardware malfunctioning

" We want to move file system from one consistent state to another
atomically

33

Example: Appending Data

® |nitial state

Inode

Data

Bitmap | Bitmap Inodes Data Blocks
|
Da
= Appending a data block Db
;ir:ﬁfaep B:z:::p‘ Inodes Data Blocks

O

30

34

Example: Crash Scenarios ()

= Everything touched media: No problem

Inode

Data

Bitmap | Bitmap Inodes Data Blocks
II
Da | Db
* Nothing touched media: No problem
* Due to page cache or internal disk write buffer
Inode | Data Inodes Data Blocks

Bitmap

Bitmap

Da

35

Example: Crash Scenarios (2)

= Only data block (Db) is written: OK

Inode | Data
Bitmap | Bitmap Inodes Data Blocks

= o]

* No inode points to data block 5 (Db)
* Data bitmap says data block 5 is free

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

Example: Crash Scenarios (3)

* Only updated inode (I') is written: Inconsistency

Inode | Data
Bitmap | Bitmap Inodes Data Blocks

il &

* Inode I’ points to data block 5, but data bitmap says it’s free

* Read will get garbage data (old contents of data block 5)

* If data block 5 is allocated to another file later, the same block will be used by two
inodes

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

37

Example: Crash Scenarios (4)

* Only updated data bitmap is written: Inconsistency

Data
Bitmap

Inode

Bitmap Inodes Data Blocks

- i

* Data bitmap indicates data block 5 is allocated, but no inode points to it

* Data block 5 will never be used by the file system
* Lost data block (space leak)

4190.568 Advance d Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

Example: Crash Scenarios (5)

* Only inode and bitmap are written: OK

Data
Bitmap

Inode

Bitmap Inodes Data Blocks

I’ .

* File system metadata is completely consistent

* Inode I’ has a pointer to data block 5 and data bitmap indicates it is in use
* Read will get garbage data (old contents of data block 5)

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

Example: Crash Scenarios (6)

* Only inode and data block are written: Inconsistency

Inode | Data
Bitmap | Bitmap Inodes Data Blocks

Il

* Inode I’ has a pointer to data block 5, but data bitmap indicates it is free

e Data block 5 can be reallocated to another inode

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

Example: Crash Scenarios (7)

* Only bitmap and data block are written: Inconsistency

Data
Bitmap

Inode

Bitmap Inodes Data Blocks

o o0 | os

* Data bitmap indicates data block 5 is in use, but no inode points to it
* Data block 5 will never be used by the file system
* Lost data block (space leak)

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

FSCK

* File System Checker

* A Unix tool for finding inconsistencies in a file system and repairing them (cf.
Scandisk in Windows)

* Run before the file system is mounted and made available

= After crash, scan whole file system for contradictions and “fix” it if
needed

* Inode bitmap consistency

Data bitmap consistency

Inode link count

Duplicated/invalid data block pointers

Other integrity checks for superblock, inode, and directories

42

Journaling

" Write-ahead logging
* A well-known technique for database transactions

* Record a log, or journal, of changes made to on-disk data structures to a separate
location (“journaling area”)

* Write updates to their final locations (“checkpointing’) only after the journal is
safely written to disk

* If a crash occurs:
— Discard the journal if the journal write is not committed
— Otherwise, redo the updates based on the journal data

* Fast as it requires to scan only the journaling area

* Used in modern file systems:
Linux Ext3/4, ReiserFS, IBM |JFS, SGI XFS,Windows NTFS, ...

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

43

Example: Appending Data (1)

* Appending a data block Db

Inode | Data

Bitmap | Bitmap Inodes Data Blocks

I’

Da | Db

DB’ IN’

= Step |:Journal write

* Write journal header block (TxB), inode block (IN’), data bitmap block (DB’) and
data block (Db)

Journal iszBl IN’ | DB’ | Db

Example: Appending Data (2)

" Step 2:Journal commit

* Write journal commit block (TxE)

TxB

Journal id=1

= Step 3: Checkpoint

IN’

DB’

* Write updates to their final on-disk locations (IN’, DB’, Db)

Inode | Data
Bitmap | Bitmap

Inodes

Data Blocks

I’

Da

Db

DB’ IN’

45

Example: Recovery (1)

* Crash between step | & 2
* Journal write has not been committed
* Simply discard the journal
* File system is rolled back to the state before data block Db is appended

Journal M

Inode | Data
Bitmap | Bitmap

Inodes Data Blocks

| |
Da

Example: Recovery (2)

* Crash between step 2 & 3
* Doesn’t matter which metadata/data blocks were actually updated

* Roll-forward recovery (redo logging): overwrite their final on-disk locations using
the journal data

Journal Bied v’ | DB’
id=1

Inode | Data

Bitmap | Bitma Inodes Da cks

??

Da | ??

Ext4 Journaling

" Journaling modes

WRITEBACK ORDERED DATA
- - N -
— 1 Fixed (Data) : ‘ Fixed (Data) J

" - .
E l Sync
- - ~ s ' - ~
< Journal (Inode) J ‘ Journal (Inode) W L Journal (Inode+Data) J Journal Write
w© . \ j
3 v Syne Y Sync r Sync
= e -
= Journal (Comimit) W ‘ Journal (Commit)J (Journal (Comimnit) W Journal Commit
5 . ,/ e . e vy
'Q_‘J ~ " » . b B
:E ~ - ‘\1 '\.I '\l
21— Fixed (Data) L : :
- N e - - = = = - i [i
qu)"r)’lr .f.r
= ’
= » » »
= 4 4
5 Fixed (Inode) W ‘ Fixed (Inode) J (Fixed (Inode+Data) W Checkpoint Write
= - W, . . v
=
= - ~

Optimizing Journaling

= Circular log

* Mark the transaction free and reuse the journal space

= Batching log updates
* Buffer all updates into a global transaction

* e.g.5 seconds in Ext3/4

" Journal checksums

* Eliminate write barrier between journal write & commit

" Metadata journaling
* Only guarantees metadata consistency

* Ordered journaling in Ext3/4: force the data write before the journal is committed
sO as not to point to garbage

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

49

