
File Systems

Jin-Soo Kim
(jinsoo.kim@snu.ac.kr)

Systems Software &
Architecture Lab.

Seoul National University

Spring 2019

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 2

▪ Abstraction given by block device drivers:

▪ Operations

• Identify(): returns N

• Read (start sector #, # of sectors, buffer address)

• Write (start sector #, # of sectors, buffer address)

512B 512B 512B

0 1 N-1

Source: Sang Lyul Min (Seoul National University)

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 3

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 4

▪ File

• A named collection of related information that is recorded on persistent storage

• Each file has an associated inode number (internal file ID)

• Inodes are unique (at a given time) within a file system

▪ Directory

• A logical group of files

• Hierarchical directory tree: directories

can be placed within other directories

• Implemented as a special file:

a list of <file name, inode number>

/

bin etc home lib usr

bill jack bin libls

a.txt t.mp3

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 5

▪ For each file, we have

• File contents (data)

– A sequence of bytes

– File systems normally do not care what they are

• File attributes (metadata or inode)

– File size

– Owner

– Access control lists

– Timestamps

– Block locations, …

• File name

– The full pathname from the root specifies a file

– e.g. open(“/etc/passwd”, O_RDONLY);

File name

Inode number

File metadata
(Inode)

File data

directory

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 6

▪ POSIX operations

open Create a file or open an existing file

close Close a file

read Read data from a file

write Write data to a file

lseek Reposition read/write file offset

stat Get file status

fsync Synchronize a file’s in-core state with storage device

link Make a new name for a file

unlink Delete a name and possibly the file it refers to

rename Change the name or location of a file

chown Change ownership of a file

chmod Change permissions of a file

flock Apply or remove an advisory lock on an open file

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 7

▪ Inode number

▪ File type: regular, directory, char/block dev, fifo, symbolic link, …

▪ Device ID containing the file

▪ User ID and group ID of the owner

▪ Access permission: rwx for owner(u), group(g), and others(o)

▪ Number of hard links

▪ File size in bytes

▪ Number of 512B blocks allocated

▪ Timestamps: time of last access (atime), time of last modification (mtime),

time of last status change (ctime)

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 8

▪ File system buffers writes into memory (“page cache”)

• Write buffering improves performance

• Up to 30 seconds in Linux

• sync() causes all pending modifications to filesystem metadata and cached file

data to be written to the underlying filesystem

• fsync() flushes all dirty data to disk, and metadata associated with the file and

tells disk to flush its write cache to the media too

• fdatasync() does not flush modified metadata

int fd = open(“foo”, O_CREAT | O_WRONLY | O_TRUNC);
int rc = write(fd, buffer, size);
rc = fsync(fd);
close(fd);

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 9

System Call

kswapdkflushd

VMVFS

Page Cache

Block
I/O Scheduler

Ext4

SCSI

SCSI core

SAS SATA
MMC

mmcqd

File Interfaces

Storage Interfaces

A Fast File System for UNIX
(M. McKusick et al., ACM TOCS, 1984)

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 11

▪ First Unix file system developed by Ken Thompson

▪ Super block

• Basic information of the file system

• Head of freelists of Inodes and data blocks

▪ Inode list

• Referenced by index into the inode list

• All inodes are the same size

▪ Data blocks

• A data block belongs to only one file

Super
Block

Inode
List

Data Blocks

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 12

▪ The original Unix file system (70’s) was very simple and

straightforwardly implemented

• But, achieved only 2% of the maximum disk bandwidth

▪ BSD Unix folks redesigned file system called FFS

• McKusick, Joy, Leffler, and Fabry (80’s)

• Keep the same interface, but change the internal implementation

▪ The basic idea is disk-awareness

• Place related things on nearby cylinders to reduce seeks

• Improved disk utilization, decreased response time

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 13

▪ Files are fragmented as the file system “ages”

• Blocks are allocated randomly over the disk

▪ Inodes are allocated far from blocks

• Traversing pathnames or manipulating files and directories requires long seeks

between inodes and data blocks

▪ Files in a directory are typically not allocated in consecutive inode slots

▪ The small block size: 512 bytes

Super
Block

Inode
List

Data Blocks
A1

A2A3 B1

B2iA

iB

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 14

▪ Use bitmaps instead of free lists

• Each bit represents whether the corresponding inode (or data block) is free or in

use

• Provides better speed, with more global view

• Faster to find contiguous free blocks

• Helps to reduce file fragmentation

Super
Block

Data BlocksInodesIB DB

Data Bitmap

Inode Bitmap

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 15

▪ Divides the disk into a number of cylinder groups

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 16

▪ Put all the structures within each cylinder group

• Modern drives do not export disk geometry information

• Modern file systems organize the drive into “block groups”

(e.g. Linux Ext2/3/4)

• Block size is increased to 4KB to improve throughput

• Super block (S) is replicated for reliability reasons

Block group 0 Block group 1 ... Block group N-1

S Data BlocksInodesIB DB

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 17

▪ Keep related stuff together

▪ Balance directories across groups

• Allocate directory blocks and its inode in the cylinder group with a low number of

allocated directories and a high number of free inodes

▪ Files in a directory are often accessed together

• Place all files that are in the same directory in the cylinder group of the directory

• Allocate data blocks of a file in the same group as its inode

• Data blocks of a large file are partitioned into chunks and distributed over multiple

cylinder groups

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 18

▪ Fragments to reduce internal fragmentation

• Each block can be broken optionally into 2, 4, or 8 fragments

• The block map manages the space at the fragment level

▪ File system parameterization

• Make the next block come into position

under the disk head by skipping some blocks

▪ Free space reserve

▪ Long file names

▪ Atomic rename

▪ Symbolic links

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 19

▪ First disk-aware file system

• Cylinder groups

• Bitmaps

• Replicated superblocks

• Large blocks

• Smart allocation policies

▪ FFS achieves 14% ~ 47% of the disk bandwidth

• The throughput deteriorates to about half when the file systems are full

▪ FFS inspired modern file systems including Ext2/3/4

Ext4 File System

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 21

▪ Evolved from Minix filesystem

• Maximum file size: 64MB (16-bit block addresses)

• Directory: fixed-size entries, file name up to 14 chars

▪ Virtual file system (VFS) added

▪ Extended filesystem (Ext), Linux 0.96c, 1992

▪ Ext2, Linux 0.99.7, 1993

▪ Ext3, Linux 2.4.15, 2001

▪ Ext4, Linux 2.6.19, 2006

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 22

▪ Scalability

• Support volume sizes up to 1EB

• Support file sizes up to 16TB

▪ Extents-based mapping

▪ Flex block group

▪ Delayed allocation

▪ Multi-block allocator

▪ Directory indexing with Htree (since Ext3)

▪ Journaling for file system consistency (since Ext3)

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 23

▪ File metadata (256 bytes/inode by default)

▪ Pointers for data blocks or extents

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 24

▪ Block group

• Similar to the cylinder group in FFS

• All the block groups have the same size and are stored sequentially

Block group 0 Block group n

Super
Block

Group
Descriptors

Data block
Bitmap

inode
Bitmap

inode
Table

Data Blocks

1 block k blocks 1 block 1 block m blocks n blocks

Boot
Block Block group 1

(3 + k + m + n = block size * 8)

128MB for 4KB block

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 25

▪ Superblock: file system metadata

• Total number of inodes

• File system size in blocks

• Free blocks / inodes counter

• Number of blocks / inodes per group

• Block size, ...

▪ Group descriptor

• Number of free blocks / inodes / directores

• Block number of block / inode bitmap, etc.

▪ Both superblock and group descriptor are duplicated in other block

groups

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 26

▪ Extent <offset, length, physical block>:

A single descriptor for a range of contiguous blocks

• 32-bit logical block number: file size up to 16TB

• 48-bit physical block number: up to 1EB filesystem

• 15-bit length: Max 128MB contiguous blocks

▪ An efficient way to represent large files

▪ Prevent file fragmentation

▪ Less metadata information to change on file deletion

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 27

▪ Up to four extents in the inode.

Otherwise, extents tree is used.

▪ Extent header

• # valid entries

• # entries / node

• Tree depth

• Magic number

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 28

Block
Bitmap

Super
Block

Group Descriptor Table

1 block N blocks 1 block * (Def. 16)

Block
Bitmap

Block
Bitmap

Block Group #0 Group #1 Group #15

1 block * (Def. 16)

Inode
Bitmap

Inode
Bitmap

Inode
Bitmap

Group #0 Group #1 Group #15

Data Blocks

Multiple blocks

Group #0

Multiple blocks

Group #2

Backup
Super
Block

Backup GDT

1 block N blocks

Group #1

Multiple blocks

Inode Table

Multiple blocks

Group #15

Inode Table

Multiple blocks

Group #0

Inode Table

Multiple blocks

Group #1

Data Blocks Data Blocks

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 29

▪ Blocks allocations postponed to page flush time, rather than during the

write() operation

• Provides the opportunity to combine many block allocation requests into a single

request

• Reduce possible fragmentation and save CPU cycles

• Avoid unnecessary block allocation for short-lived files

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 30

▪ Ext3 allocates one block at a time

→ Inefficient for larger I/Os

▪ An entire extent, containing multiple contiguous blocks, is allocated at

once

• Reduce fragmentation

• Reduce extent metadata

• Eliminate multiple calls and reduce CPU utilization

▪ Stripe size aligned allocations

▪ Pack small files together and avoid fragmentation of free space (“per-cpu

locality group”)

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 31

▪ Htree-based directory

• 32-bit hashes for keys

• Each key refers to a range of

entries in a leaf block

• High fanout factor

(over 500 for 4KB block)

• Constant depth

(one or two levels)

• Leaf blocks are identical to

old-style directory blocks

entry for .

entry for ..

header

hash block

hash block

…

hash block

hash block

16 o emh5 2 1 \0 \0 \053
28 s \0ru3 267
16 l fdo7 1 i l e \00
12 i \0nb3 234...

Crash Consistency

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 33

▪ File system may perform several disk writes to complete a single system

call

• e.g. creat(), write(), unlink(), rename(), …

• But, disk only guarantees atomicity of a single sector write

▪ If file system is interrupted between writes, the on-disk structure may

be left in an inconsistent state

• Power loss

• System crash (kernel panic)

• Transient hardware malfunctioning

▪ We want to move file system from one consistent state to another

atomically

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 34

▪ Initial state

▪ Appending a data block Db

I
Da

Inode
Bitmap

Data
Bitmap Inodes Data Blocks

I’
Da Db

Inode
Bitmap

Data
Bitmap Inodes Data Blocks

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 35

▪ Everything touched media: No problem

▪ Nothing touched media: No problem

• Due to page cache or internal disk write buffer

I’
Da Db

Inode
Bitmap

Data
Bitmap Inodes Data Blocks

I
Da

Inode
Bitmap

Data
Bitmap Inodes Data Blocks

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 36

▪ Only data block (Db) is written: OK

• No inode points to data block 5 (Db)

• Data bitmap says data block 5 is free

I
Da Db

Inode
Bitmap

Data
Bitmap Inodes Data Blocks

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 37

▪ Only updated inode (I’) is written: Inconsistency

• Inode I’ points to data block 5, but data bitmap says it’s free

• Read will get garbage data (old contents of data block 5)

• If data block 5 is allocated to another file later, the same block will be used by two

inodes

I’
Da

Inode
Bitmap

Data
Bitmap Inodes Data Blocks

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 38

▪ Only updated data bitmap is written: Inconsistency

• Data bitmap indicates data block 5 is allocated, but no inode points to it

• Data block 5 will never be used by the file system

• Lost data block (space leak)

I
Da

Inode
Bitmap

Data
Bitmap Inodes Data Blocks

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 39

▪ Only inode and bitmap are written: OK

• File system metadata is completely consistent

• Inode I’ has a pointer to data block 5 and data bitmap indicates it is in use

• Read will get garbage data (old contents of data block 5)

I’
Da

Inode
Bitmap

Data
Bitmap Inodes Data Blocks

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 40

▪ Only inode and data block are written: Inconsistency

• Inode I’ has a pointer to data block 5, but data bitmap indicates it is free

• Data block 5 can be reallocated to another inode

I’
Da Db

Inode
Bitmap

Data
Bitmap Inodes Data Blocks

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 41

▪ Only bitmap and data block are written: Inconsistency

• Data bitmap indicates data block 5 is in use, but no inode points to it

• Data block 5 will never be used by the file system

• Lost data block (space leak)

I
Da Db

Inode
Bitmap

Data
Bitmap Inodes Data Blocks

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 42

▪ File System Checker

• A Unix tool for finding inconsistencies in a file system and repairing them (cf.

Scandisk in Windows)

• Run before the file system is mounted and made available

▪ After crash, scan whole file system for contradictions and “fix” it if

needed

• Inode bitmap consistency

• Data bitmap consistency

• Inode link count

• Duplicated/invalid data block pointers

• Other integrity checks for superblock, inode, and directories

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 43

▪ Write-ahead logging

• A well-known technique for database transactions

• Record a log, or journal, of changes made to on-disk data structures to a separate

location (“journaling area”)

• Write updates to their final locations (“checkpointing”) only after the journal is

safely written to disk

• If a crash occurs:

– Discard the journal if the journal write is not committed

– Otherwise, redo the updates based on the journal data

• Fast as it requires to scan only the journaling area

• Used in modern file systems:

Linux Ext3/4, ReiserFS, IBM JFS, SGI XFS, Windows NTFS, …

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 44

▪ Appending a data block Db

▪ Step 1: Journal write

• Write journal header block (TxB), inode block (IN’), data bitmap block (DB’) and

data block (Db)

I’
Da Db

Inode
Bitmap

Data
Bitmap Inodes Data Blocks

DB’ IN’

TxB
id=1

IN’ DB’ DbJournal

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 45

▪ Step 2: Journal commit

• Write journal commit block (TxE)

▪ Step 3: Checkpoint

• Write updates to their final on-disk locations (IN’, DB’, Db)

TxB
id=1

IN’ DB’ DbJournal TxE
id=1

I’
Da Db

Inode
Bitmap

Data
Bitmap Inodes Data Blocks

DB’ IN’

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 46

▪ Crash between step 1 & 2

• Journal write has not been committed

• Simply discard the journal

• File system is rolled back to the state before data block Db is appended

TxB
id=1

IN’ ?? DbJournal

I
Da

Inode
Bitmap

Data
Bitmap Inodes Data Blocks

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 47

▪ Crash between step 2 & 3

• Doesn’t matter which metadata/data blocks were actually updated

• Roll-forward recovery (redo logging): overwrite their final on-disk locations using

the journal data

TxB
id=1

IN’ DB’ DbJournal TxE
id=1

?

??
Da ??

Inode
Bitmap

Data
Bitmap Inodes Data Blocks

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 48

▪ Journaling modes

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 49

▪ Circular log

• Mark the transaction free and reuse the journal space

▪ Batching log updates

• Buffer all updates into a global transaction

• e.g. 5 seconds in Ext3/4

▪ Journal checksums

• Eliminate write barrier between journal write & commit

▪ Metadata journaling

• Only guarantees metadata consistency

• Ordered journaling in Ext3/4: force the data write before the journal is committed

so as not to point to garbage

