Jin-Soo Kim
(jinsoo.kim@snu.ac.kr)

Systems Software &
Architecture Lab.

Seoul National University

Spring 2019

Flash Memory

Flash Memory Basics

= Two states based on the presence of electrons

ggg=§§§ O = Electrons present 1 = No electrons
=1=]=]

= Challenges
* How to attract or expel electrons!?

* How to find out whether there are
electrons or not!

* How to keep electrons without any power?

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 2

Flash Memory Characteristics

= Erase-before-write

* Read

* Write or Program: | - 0 MEIRIEIEIEIRE

* Erase: 0 2 | write
(program)

1101110110

" Bulk erase

* Read/program unit 1 erase
— NOR: byte or word
— NAND: page

 Erase unit: block

1(1{1{1{1{1|{1|1

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

Logical View of NAND Flash

= A collection of blocks

* Each block has a number of pages

* The size of a block or a page depends on the technology
(but, it’s getting larger)

B u

Data area Spare area

Plane

* Each plane has its own page register and cache register
" Pages can be programmed or read at once

= Optional feature: |,2,4,8, ... planes

2,112 bytes—«— 2,112 bytes —»

- - /o7
Cache Register 2,048 X 64 2,048 i64 IIO’(’}
1 |
Data Register 2,048 64| 2,048 64
- 1page = (2K + 64 bytes)
1block = (2K + 64) bytes x 64 pages
2,048 blocks } = (128K + 4K) bytes
per plane J 1 block 1 block
4,096 blocks 1 plane f (2112%(h;;b-ﬂfl() bytes x 2,048 blocks
per device -
1 device = 2,112Mb x 2 planes
" = 4,224Mb
L A J
" T
Plane of Plane of
even-numbered blocks odd-numbered blocks

(0,2, 4,6, ..,4,092, 4,094) (1,3,5,7, .. 4,093, 4,095)

Die / Chip

= Each chip has multiple dies (can be stacked)

" + extra circuits, chip enable signal, ready/busy signal

! | Serial Connection | !
1 1
1 1
1 Plane 0 Plane 1 Plane 2 Plane 3 Plane 0 Plane 1 Plane 2 Plane 3 1
1 Block 0 Block 1 Block 4096 Block 4097 Block 0 Block 1 Block 4096 Block 4097 1
1 1
1 Page 0 Page 0 Page0 Page 0 Page 0 Page 0 Page 0 Page 0 1
1 Page 1 Pagel Pagel Page 1 Pagel Page 1 Page 1 Page 1 1
o) o o o) o o
1] o 0 o o o o o 1
1 Page 63 ‘ | Page 63 | | Page 63 ‘ | Page 63 Page 63 | ‘ Page 63 ‘ ‘ Page 63 | ‘ Page 63 1
1 1
1 1
o o o 0 o o o o
1 1
o o o 0 o o o o
I o o o A o o o o I
I o o o o o o o o I
1 1
1 Block 4094 Block 4095 Block 8190 Block 8191 Block 4094 Block 4095 Block 8190 Block 8191 1
1 1
Page 0 Page 0 Page 0 Page 0 Page 0 Page 0 Page 0 Page 0
1 1
I Pagel Page 1 Page 1 Pagel Page 1 Page 1 Pagel Page 1 I
o] o o o o o o
1 o o o o o o o o 1
1 ‘ Page 63 ‘ | Page 63 ‘ Page 63 Page 63 | Page 63 | | Page 63 | Page 63 Page 63 1
1 1
1 [[3K Register | [[4K Register | 4K Register || | | 4K Register | | 4K Register | | 4K Register | | 4K Register | | 4K Register | 1
1 1
1 . 1
Die 0
1 Flash Package (4 GB) Die 1 1

N. Agrawal, Design Tradeoffs for SSD Performance, USENIX ATC, 2008.
6

NAND Flash Types

= SLC NAND
* Single Level Cell (I bit/cell)

= MLC NAND
* Multi Level Cell (2 bits/cell)

= TLC NAND
* Triple Level Cell (3 bits/cell)

= QLC NAND
* Quad Level Cell (4 bits/cell)

= 3D NAND (or V-.NAND)

» S5LC NAMD stores 2 states per memaory cell and allows 1 bit

What is the Difference

programmediread per memaory cell.

Reference Point

5
L
5
=}
L]
g
]
=
=
[«
SLC: One Bit Per Cell vt
MLC stands for multi-level cell NAND
» MLC MAMND stores 4 states per memory cell and allows 2 bits
programmed/read per memory cell
8 Reference Polrts
T .
k=
=}
i
g
;
o o -
MLC: Two Bits Per Cell Vi
S Micron Technology, Inc.

Characteristics of NAND Flash

Erase-Before-VWrite

" |n-place update (overwrite) is not allowed
" Pages must be erased before new data is programmed

* The erase unit is much larger than the read/write unit

* Read/write unit: page (4KB, 8KB, 16KB,...)
* Erase unit: block (64-512 pages)

* What if there are live pages in the block we wish to erase!

Limited Lifetime

* The number of times NAND flash blocks can reliably programmed and
erased (P/E cycle) is limited
* SLCs: 50,000 ~ 100,000
MLGCs: 1,500 ~ 5,000
eMLCs (Enterprise MLCs): 10,000 ~ 30,000
TLCs: < [,000
e QLGCs:
* High voltage applied to cell degrades oxide

* Electrons are trapped in oxide
 Break down of the oxide structure

= Requires wear leveling

10

Flash Endurance

NAND Flash Memory Endurance Properties

N

<

Q

& 10000 L .

(] i .

o [| e sLC

I - | * MLC —s

"é i * TLC

S 1000 ¢

E 5 \N—

- I Lithography nm
130 g0 64 a1 40 32 20 18 16 14

100]]]] |]] !] |] !] ! |]

2000 2005 2010 2015

E. Grochowski et al., Future Technology Challenges for NAND Flash and HDD Products, FMS, 2012.
11

Asymmetric Read/Write Latency

* Reading a page is faster than programming it

* Usually more than 10x
* e.g. lynm MLC': Read 45ps, Program 1350us, Erase 4ms

" Programming a page should go through multiple steps of Program &
Verify phases

" As the technology shrinks, read/write latency tends to increase

= MLC and TLC make it even worse

MLC Programming

= | SB programmed first

* Cell cannot move to the lower voltage before erase

ERASE PROGRAM Erased m
MSE Program LSB Program MSB Program VR, Vi
LSB programing |
MSB SR : P
LsB { 1 1 m
1 > VR Va
MSB programing ™ n
T PV1 T PV2 PV3 prog £ |

[\ [w\
IR_; A%

VR; V -

th

RD1 RD2 RD3 : :
Vread 11 i @
VR,

Program : “1”(Erase) = “0”(Program)

LSB Program : 1) Erase > Erase, 2) Erase > LSB
MSB Program: 1) Erase > Erase, 2) Erase = PV1, 3) LSB > PV2, 4) LSB > PV3

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 13

Paired Pages in MLC

" One cell represents two or three bits in paired pages
* LSB:low voltage, fast program, less error

* MSB: high voltage, slow program, more error

" Performance difference

’gg i First Bit
= |SB page can be =4 | & Second B

c 3 4 [Third Bt

corrupted when MSB £

. -

page programming £ (1) 1 J J J r. J

. . P T

is interrupted = § 249 KN
§ Srinied

\6‘7\)\ 6‘\6\7 N3 QS\S{?
NN,
0y My 0y 0y 0y Ty 0y
L. M. Grupp et al., The Harey Tortoise: Managing Heterogeneous Write Performance in SSDs, USENIX ATC, 2013.
14

Bit Errors

= Bits are flipping frequently

* Error Correction Code (ECC) in spare area

Spare Area
Page 4KB (128 byte)
A A

Data #2

Data #3

Data #4

512 bytes | 512 bytes 512 bytes

Data #8 ECC ECC

Data #6 Data #7
512 bytes | 512bytes 512 bytes # | a3

ECC
#4

ECC
#6

ECC
#7

ECC
#3

Mapping info

Bits Required in the NAND Flash Spare Area
Error Correction

Level Hamming Reed-Sclomon BCH

1 13 18 13

2 N/A 36 26

3 N/A 54 39

4 N/A 72 52

5 N/A 90 65

6 N/A 108 78

7 N/A 126 91
8 N/A 144 104
9 N/A 162 117
10 N/A 180 130

Source: Micron Technology, Inc.

15

ECC Requirements

= Fndurance continues to deteriorate
= Stronger ECCs are required: RS, BCH, LDPC

ECC Requirements
100000 - /

90000 -
80000 -
70000 -

/
/
60000 -/
50000 /
/
-
/

~//24bitECe

40000 -
30000 -
20000 -
10000 -

0

P/E Cycles

4-pnt £CC

3k

SLC 5Xnm MLC 3x nm MLC 2xnm MLC 3-bit-per-Cell

Y. Cai et al., Error Patterns in MLC NAND Flash Memory: Measurement, Characterization, and Analysis, DATE, 2012.
4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 16

Reliability

= Write disturbance

* When a page is programmed, adjacent
calls receive elevated voltage stress

= Read disturbance

* Repeated reading from one page can
alter the values stored in other unread

pages

= Retention error

* Threshold voltage shifts down due to
charge leakage from the floating gate

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

Write disturbance

g o

17

Bad Blocks

= |nitial bad blocks

* Due to production yield constraints and the pressure to keep costs low
* SLCs:up to 2%
* MLGCs: up to 5%

= Run-time bad blocks

* Read, write, or erase failure
* Permanent shift in the voltage levels of the cells due to trapped electrons

= Requires run-time bad block management

18

Page Programming Constraints

= NOP

* The number of partial-page programming is limited
* | / sector for most SLCs (4 for 2KB page)
* | / page for most MLCs and TLCs

= Sequential page programming
* Pages should be programmed sequentially inside a block
* For large block SLCs, MLCs,and TLCs

= SLC mode

* Possible to use only LSB pages in MLCs and TLCs
* Faster and more reliable, higher P/E cycles

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

19

Beauty and the Beast

* NAND Flash memory is a beauty
* Small, light-weight, robust, low-cost,
low-power non-volatile device
= NAND Flash memory is a beast
* Much slower program/erase operations
* No in-place-update

 Erase unit > write unit

Limited lifetime

Bit errors, bad blocks, ...

" Software support is essential for
performance and reliability!

Page Mapping FTL

Storage Abstraction

= Abstraction given by block device drivers:

0 1 N-1

= Operations
* ldentify(): returns N
* Read (start sector #, # of sectors, buffer address)
* Write (start sector #,# of sectors, buffer address)

Source: Sang Lyul Min (Seoul National University)
4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 22

What is FTL?

= A software layer to make NAND flash fully emulate traditional block

devices (or disks)

P

Read Sectors Write Sectors

Read Write Erase

T 9 9

Device Driver

PR

Write Sectors

Read Sectors

Read Sectors

O

Write Sectors

O

FTL

+

Device Driver

+

I;Iasl"l:l\vll\em

=

Source: Zeen Info. Tech.

23

FTL Architecture

* Sector Translation Layer

* Address mapping '

* Garbage collection S

+ Wear leveling
x

* Block Management Layer J
ocC evice briver

* Bad block management
* Error handling

= Low Level Driver ——— Controller
FTL (Flash Translation Layer) -

° Flash |nterface Flash Translation Layer
i B
4
’

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 24

Address Mapping

write

LBA address space
(As seen by the host)

-

Mapping table

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

> ——————
>

NAND flash

25

Address Mapping

* Required due to “no overwrite” characteristic

write

LBA address space
(As seen by the host)

-

Mapping table
NAND flash

-
B oo

26

Mapping Schemes

* Page mapping
* Fine-granularity page-level map table
* Hugh amount of memory space required for the map table

* Block mapping
* Coarse-granularity block-level map table
* Small amount of memory space required for the map table

* Hybrid mapping
* Use both page-level and block-level map tables

* Higher algorithm complexity

4190.568 Advance d Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

27

Plethora of FTLs

HFTL
SAST SFTL MS FTL BPLRU

BFTL AFTL FAST LazyFTL
KAST
Chameleon ENFLE DFTL
LAST MNFTL

uper-block schem CFTL
SUPEr-bIocK sC < Log block scheme

GFTL p-FTL JFTL ,F7L
Replacement block scheme
Hydra FTL \anila fTL 7
YanusFTL

Reconfigurable FTL
WAFTL UFTL

........... and so on

E. H. Nam, HIL: FTL Design Framework with Provably-correct Crash Recovery, NVRAMOS, 2013.
4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 28

Page Mapping

= Mapping in page-level
* Logical page number = physical page number
* Page mapping table (PMT) required
* # entries in PMT == # pages visible to OS

» Translation

* Step |:logical sector number = logical page number (LPN)
* Step 2: LPN - physical page number (PPN) via PMT

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

29

Example: Page Mapping

* Flash configuration

vui A OO N =R O

Page Map Table Data Block

* Page size: 4KB o G PBN:O
* # of pages / block = 4 ; =
sl

= Current state 4‘5‘9= PBN: 1
* Written to page 0, [,2,8,4,5 g =

- R d' 5 : - PBN: 2
eading page . E—
ul

Logical page #5 } PBN: 3

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

v
&DW\lO\U‘IthHOE

[
= O

BB R R
v b WN

Example: Page Mapping

* Flash configuration
* Page size: 4KB
* # of pages / block = 4

= Current state
* Written to page 0, [,2,8,4,5

* New requests (in order)
* Write to page 9
* Write to page 3
* Write to page 5

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

Page Map Table

o

[y

O 00 NoOoOunu &~ WN

(Y
= O

(Y

PBN: 0

PBN: 1

PBN: 2

PBN: 3

Data Block

vui A OO N =R O

v
&DW\lO\U‘IthHOE

[
= O

BB R R
v b WN

31

Example: Page Mapping

* Flash configuration
* Page size: 4KB
* # of pages / block = 4

= Current state
* Written to page 0, [,2,8,4,5

* New requests (in order)
* Write to page 9
* Write to page 3
* Write to page 5

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

Page Map Table

o

[y

O 00 NoOoOunu &~ WN

(Y
= O

(Y

PBN: 0

PBN: 1

PBN: 2

PBN: 3

Data Block

OO un A ON R O

v
&DW\lO\U‘IthHOE

[
= O

BB R R
v b WN

32

Example: Page Mapping

* Flash configuration
* Page size: 4KB
* # of pages / block = 4

= Current state
* Written to page 0, [,2,8,4,5

* New requests (in order)
* Write to page 9
* Write to page 3
* Write to page 5

Page Map Table

0

O 00 NOU»u & WIN PR

N =
= O

0

gu b NN =

PBN: 0

PBN: 1

PBN: 2

PBN: 3

Data Block

w o unn Ao ON R O

O
WNO\W&WNHO;

AN
m o v

BB R R
i H W N

33

Example: Page Mapping

* Flash configuration
* Page size: 4KB
* # of pages / block = 4

= Current state
* Written to page 0, [,2,8,4,5

* New requests (in order)
* Write to page 9
* Write to page 3
* Write to page 5

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

Page Map Table Data Block
0 - PBN: 0 0
11 1
2 2 2
371 8
a4 PBN: 1 4
s RN — X
6 I |,validate o
7B o page 3
8
o = PBN: 2 5
10- Updated
11- page write

PBN: 3

v
&DW\lO\U‘IthHOE

[
= O

BB R R
v b WN

34

Page Mapping

= Pros
e Most flexible

* Efficient handling of small random writes
— A logical page can be located anywhere within the flash storage
— Updated page can be written to any free page

= Cons

* Large memory footprint
— One page mapping entry per page
— 32MB for 32GB (4KB page)

* Sensitive to the amount of reserved blocks

* Performance affected as the system ages

4190.568 Advance d Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

35

Why!

SSD Performance States - Normalized IOPS
———D1MLC =-—-D2MLC ~=D3IMLC =——D4MLC ~=D5MLC =D6MLC ‘D7SLC ==DB8SLC
1.2
FOB _
4KB random writes

1o

Transition

.r
N | Steady State n
Q. ®
O | (desirable test range)
e _
ﬁ 06 = % — =
m
E \
o | .
=

0.4

|

lig.z — = rm——— o = : el

\ St -
0.0 = - ; R . — ——
0 100 300 400 s 600 700
Time (Minutes)

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

http://tfindelkind.com/2015/08/20/
36

Garbage Collection

= Garbage collection (GC)
* Eventually, FTL will run out of blocks to write to
* GC must be performed to reclaim free space
* Actual GC procedure depends on the mapping scheme

= GC in page-mapping FTL
* Select victim block(s)

* Copy all valid pages of victim block(s) to free block
* Erase victim block(s)

* Note: At least one free block should be reserved for GC

4190.568 Advance d Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

37

Example: GC in Page Mapping

= Current state
* Written to page 0, [,2,8,4,5
* Written to page 9, 3,5

* New requests (in order)
* Write to page 8
* Write to page 9
* Write to page 3
* Write to page |

Write to page 4

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

Page Map Table

PBN: 0

PBN: 1

PBN: 2

PBN: 3

Data Block

H OO N B O

Spare block

v
&DW\IO\U'I-thHOE

[
= O

BB R R
u b W N

38

Example: GC in Page Mapping

= Current state
* Written to page 0, [,2,8,4,5
* Written to page 9, 3,5

* New requests (in order)
* Write to page 8
* Write to page 9
* Write to page 3
* Write to page |

Write to page 4

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

Page Map Table

PBN: 0

PBN: 1

PBN: 2

PBN: 3

Data Block

0
1
2

xos
X

Spare block

v
&DW\IO\U‘IthHOE

[
= O

BB R R
u b W N

39

Example: GC in Page Mapping

= Current state
* Written to page 0, [,2,8,4,5
* Written to page 9, 3,5

* New requests (in order)
* Write to page 8
* Write to page 9
* Write to page 3
* Write to page |

Write to page 4

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

Page Map Table

PBN: 0

PBN: 1

PBN: 2

PBN: 3

Data Block

0
1
2

xos
X

4
X450

3
5
8
9

Spare block

v
&DW\IO\U‘IthHOE

[
= O

BB R R
u b W N

40

Example: GC in Page Mapping

= Current state
* Written to page 0, [,2,8,4,5
* Written to page 9, 3,5

* New requests (in order)
* Write to page 8
* Write to page 9
* Write to page 3
* Write to page |

Write to page 4

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

Page Map Table

PBN: 0

PBN: 1

PBN: 2

PBN: 3

Data Block

0
1
2

xos
X

4

=5
Xio
RSN

5

8
9
3

Spare block

v
&DOO\IO\U'I-thHQE

[
= O

BB R R
u b W N

41

Example: GC in Page Mapping

= Current state
* Written to page 0, [,2,8,4,5
* Written to page 9, 3,5

Page Map Table Data Block

o
2

H IW N = O

* New requests (in order)
* Write to page 8

* Write to page 9

O WWjIN O n

* Write to page 3

* Write to page | Valid page copy

12

. PBN: 3
* Write to page 4 Updated page write ——— 13
14

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

42

Example: GC in Page Mapping

= Current state
* Written to page 0, [,2,8,4,5
* Written to page 9, 3,5

* New requests (in order)
* Write to page 8
* Write to page 9
* Write to page 3
* Write to page |

Write to page 4

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

Page Map Table

Data Block

0
X1

2

PBN: 1

PBN: 0

Spare block

PBN: 2

W W 00 un

PBN: 3 -’51-

4

o
2

O 00 NoOu»ul &~ WIN R O

43

Write Amplification

= Ratio of data written to flash to data written from host

* Write Amplification Factor (VWAF)

— Bytes written to Flash _ Bytes written from Host+Bytes written during GC
Bytes written from Host Bytes writen from Host

* Generally, WAF is greater than one in flash storage

* Due to valid page copies made from victim block to free block during GC
* WAF is one of metrics which shows the efficiency of GC

44

Example: Write Amplification

= Current state
Page Map Table Data Block

: PPN

* Written to page 0, [,2,8,4,5 o oy 0

: 1 s 1

* Written to page 9, 3,5 > B ,
3 3

i : 4 12 4
New requests (in order) -)

* Write to page 8§, 9, 3, | 6 6
Pas 7 ;

8. 9 5 8

9o 10 8 9

= WAF =1.08 0 9 10

11-

 Total host writes: |3 Valid page copy -

) PBN: 3 4 12

e Total flash writes: |14 Updated page write ————* 1 13
14

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

Victim Selection Policy: Greedy

= Selects a block with the largest amount of invalid data
= A block with the minimum utilization u

Number of valid pages in a block

‘e Number of Pages in a block
" Pros
* Least valid data copying costs
* Simple
= Cons

* Does not perform well when there is high locality among writes

* Does not consider wear leveling

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

46

Victim Selection Policy: Cost-Benefit

= Selects a block with the maximum

Benefit (1—-u)
Cost 2u

X age

* u:utilization
* age: the time since the last modification
" Pros

* Performs well with locality

* Somehow helps to achieve even wear

= Cons

* Computation/data overhead

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

47

Over-Provisioning

Physical Capacity

= OP (Over-Provisioning) = 1

Logical Capacity

* Extra media space on an SSD that does not contain user data

= Typical SSDs have more space than is advertised

* Consumer SSDs: ~ 7%
— | Gigabyte (GB) = 107 bytes = 1,000,000,000 bytes
— | Gibibyte (GiB) = 230 bytes = 1,073,741,824 bytes
* Enterprise SSDs: > 25%

— e.g. |I00GB user space on 128GiB SSD:
~ 28% + 7% = 35%

128GB—*

128GB /
100GB /

7.37% Inherent OP

28% Factory-set OP

48

Over-Provisioning

* Over-Provisioning Space (OPY) is used for
* Firmware images
* FTL metadata

* Bad block remapping
* Write buffers

* Garbage collection cost
* Affected by utilization of SSD space and Over-Provisioning
* Lower utilization = Better performance

* Larger OP - Better performance

4190.568 Advance d Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

49

Example: Over-Provisioning

= OP=33%

Page Map Table
* Logical capacity: 3 blocks

* Physical capacity: 4 blocks

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

Data Block

B X JE

PBN: 3

v
LDOO\IO\W#WNHOE

[
= O

R R R R
u b W N

50

Over-Provisioning

* Over-provisioning and random write workloads

* What about for sequential write workloads!?

1.10
1.00 — 7.4% Effective OP emmmmm 19.3% Effective OP ——— 34.2% Effective OP |
90 . 53.4% Effective OP = 79.0% Effoctive OP e 114.8% Effective OP [

4KB Random Write IOPS Normalized to FOB

10 T — —
00] I I |]]] L] 1 1
0 50 100 150 200 250 300 350 400 450 500
Minutes

D. Glen, Differences in Personal vs. Enterprise SSD Performance, Micron Technology, Inc.

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 51

Over-Provisioning

= Over-provisioning on GC
* Larger OP results in lower WAF

Valid Data B /nvalid Data Data to be moved

7% Effective Over-Provisioning 25% Effective Over-Provisioning

£-z2t
-
s ;

Valid data to move: 12 Valid data to move: 9

"

D. Glen, Differences in Personal vs. Enterprise SSD Performance, Micron Technology, Inc.

52

