
Virtual Memory

Jin-Soo Kim
(jinsoo.kim@snu.ac.kr)

Systems Software &
Architecture Lab.

Seoul National University

Spring 2019

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 2

▪ Transparency

• Processes should not be aware that memory is shared

• Provides a convenient abstraction for programming (a large, contiguous space)

▪ Efficiency

• Minimizes fragmentation due to variable-sized requests (space)

• Gets some hardware support (time)

▪ Protection

• Protect processes and the OS from another process

• Isolation: a process can fail without affecting other processes

• Cooperating processes can share portions of memory

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 3

▪ Process’ abstract view of memory

• OS provides an illusion of private

address space to each process

• Contains all of the memory state of

the process

• Static area

– Allocated on exec()

– Code & Data

• Dynamic area

– Allocated at runtime

– Can grow or shrink

– Heap & stack
kernel virtual memory

(code, data, heap, stack)

run-time heap
(managed by malloc)

user stack
(created at runtime)

unused
0

memory
invisible to
user code

brk

read/write segment
(.data, .bss)

read-only segment
(.init, .text, .rodata)

N-1

stack
pointer

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 4

▪ Allows the physical address space of a process to be noncontiguous

• Divide virtual memory into blocks of same size (pages)

• Divide physical memory into fixed-size blocks (frames)

• Page (or frame) size is power of 2 (typically 512B – 8KB)

▪ Eases memory management

• OS keeps track of all free frames

• To run a program of size n pages, need to find n free frames and load the program

• Set up a page table to translate virtual to physical addresses

• No external fragmentation

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 5

Frame 11

Frame 10

Frame 9

Frame 8

Frame 7

Frame 6

Frame 5Page 5

Frame 4Page 4

Frame 3

Frame 2

Frame 1

Frame 0

Page 3

Page 2

Page 1

Page 0

Process
A

Process
B

Virtual memory

Page 3

Page 2

Page 1

Page 0

9

Page
tables

7

11

4

6

5

10

2

0

3

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 6

▪ Translating virtual addresses

• A virtual address has two parts:

<VPN, Offset>

• VPN is an index into the page table

• Page table determines Page Frame Number (PFN)

• Physical address is <PFN, Offset>

• Usually, |VPN| >= |PFN|

▪ Page tables

• Managed by OS

• Map VPN to PFN

• One Page Table Entry (PTE) per page in virtual address space

Virtual Page Number (VPN) Offset

Page Table

Page Frame Number (PFN) Offset

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 7

▪ OS uses main memory as a (page) cache of all the data allocated by

processes in the system

• Bring a page into memory only when it is needed

• Pages can be evicted from their physical memory frames

• Evicted pages go to disk (only dirty pages are written)

• Movement of pages is transparent to processes

▪ Benefits

• Less I/O needed

• Less memory needed

• Faster response

• More processes

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 8

▪ An exception raised by CPU when accessing invalid PTE

▪ Major page faults

• The page is valid but not loaded into memory

• OS maintains information on where to find the contents

• Require disk I/Os

▪ Minor page faults

• Page faults can be resolved without disk I/O

• Used for lazy allocation (e.g. accesses to stack & heap pages)

• Accesses to prefetched pages, etc.

▪ Invalid page faults

• Segmentation violation: the page is not in use

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 9

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 10

▪ No external fragmentation

▪ Fast to allocate and free

• A list or bitmap for free page frames

• Allocation: no need to find contiguous free space

• Free: no need to coalesce with adjacent free space

▪ Easy to “page out” portions of memory to disk

• Page size is chosen to be a multiple of disk block sizes

• Use valid bit to detect reference to “paged-out” pages

• Can run process when some pages are on disk

▪ Easy to protect and share pages

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 11

▪ Internal fragmentation

• Wasted memory grows with larger pages

▪ Memory reference overhead

• Page table stored in memory

• Address translation increases latency

• Solution: get hardware support (TLBs)

▪ Storage needed for page tables

• Needs one PTE for each page in virtual address space

• 32-bit virtual address space with 4KB pages: 4MB per page table

• Page table for each process

• Solution: store valid PTEs only or page the page table

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 12

▪ IA-32e paging mode in Intel 64

• 48-bit “linear” address → 52-bit physical address (4KB page)

Page Map

Level 4

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 13

▪ 57-bit virtual address space

▪ Supported by Linux

since 4.14

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 14

invalid

(bit 18 = 0)

00

01

10

reserved 11

(bit 18 = 1) 10

invalid 00

01

1x

64KB
large page

4KB
small page

1MB
section

16MB
supersection

L1 index L2 index offset

Translation table Coarse page table
TTBR0

or
TTBR1

virtual address

256 entries (1KB)

4096 entries (16KB)

8 bits12 bits

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 15

▪ Translation Lookaside Buffer

• A hardware cache of popular virtual-to-physical address translations

• Essential component which makes virtual memory possible

▪ TLB exploits locality

• Temporal locality: an instruction or data item that has been recently accessed will

likely be re-accessed soon

– Instructions and data accesses in loops, …

• Spatial locality: if a program accesses memory at address x, it will likely soon access

memory near x

– Code execution, array traversal, stack accesses, …

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 16

▪ TLB is implemented in hardware

• Processes only use a handful of pages at a time

– 16~256 entries in TLB is typical

• Usually fully associative

– All entries looked up in parallel

– But may be set associative to reduce latency

• Replacement policy: LRU (Least Recently Used)

• CPU knows where page tables are in memory (PTBR)

– e.g. CR3 (or PDBR) register in x86

• TLB actually caches the whole

PTEs, not just PFNs

Valid Tag (VPN) Value (PTE)

1 0x1000

1 0x2400

0 - -

V R M Prot PFN 0x1234

V R M Prot PFN 0x8800

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 17

▪ Flush TLB on each context switch

• TLB is flushed automatically when PTBR is changed in a hardware-managed TLB

• Some architectures support the pinning of pages into TLB

– For pages that are globally-shared among processes (e.g. kernel pages)

– MIPS, Intel, etc.

▪ Track which entries are for which process

• Tag each TLB entry with an ASID (Address Space ID)

• A privileged register holds the ASID of the current process

• MIPS / ARMv7-A support 8-bit ASID

• ARMv8-A supports 8-bit/16-bit ASID

• Intel 64 supports 12-bit PCID (Process Context ID) – Since Westmere (2010)

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 18

▪ TLB is the source of many performance problems

• Performance metric: hit rate, lookup latency, …

▪ Increase TLB reach (= # TLB entries * Page size)

• Increase the page size: e.g. 2MB/1GB in Intel 64, 4KB/16KB/64KB in ARMv8

• Increase the TLB size

▪ Use multi-level TLBs

• e.g. Intel Haswell (4KB pages):

L1 ITLB 128 entries (4-way), L1 DTLB 64-entries (4-way) +

L2 STLB 1024 entries (8-way)

▪ Change your algorithms and data structures to be TLB-friendly

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 19

▪ To mitigate Meltdown vulnerability

▪ Separate page table for kernel

▪ Minimal kernel space for syscall,

page fault & interrupt handling

▪ Merged in 4.15

▪ CONFIG_PAGE_TABLE_ISOLATION=y

▪ Disabled by ‘nopti’ at boot time

▪ PCID becomes critical to the

performance

(NX)

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 20

▪ Swap space

• Disk space reserved for moving pages back and forth

• The size of the swap space determines the maximum number of memory pages

that can be in use

• Block size is same as the page size

• Can be a dedicated partition or a file in the file system

PID 0
(VPN 0)

PID 1
(VPN 1)

PID 1
(VPN 2)

PID 2
(VPN 0)

PID 0
(VPN 1)

PID 0
(VPN 2)

Free
PID 1

(VPN 0)
PID 1

(VPN 1)
PID 3

(VPN 0)
PID 2

(VPN 1)
PID 3

(VPN 1)

PFN 0 PFN 1 PFN 2 PFN 3

Blk 0 Blk 1 Blk 2 Blk 3 Blk 4 Blk 5 Blk 6 Blk 7

Physical
Memory

Swap
Space

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 21

▪ Proactively based on thresholds

• OS wants to keep a small portion of memory free

• Two threshold values:

HW (high watermark) and LW (low watermark)

• A background thread called swap daemon (or page daemon) is responsible for

freeing memory

– e.g. kswapd in Linux

• If (# free pages < LW), the swap daemon starts to evict pages from physical

memory

• If (# free pages > HW), the swap daemon goes to sleep

• What if the allocation speed is faster than reclamation speed?

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 22

min_wmark_pages

low_wmark_pages

high_wmark_pages

kswapd sleeps

GFP_ATOMIC allocation
can go below min_wmark_pages

Rate of page consumption is
slowed by kswapd
but still allocating too fast

Free pages

kswapd woken up

Allocating process
frees pages
synchronously

time

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 23

File Pages Anonymous Pages

Mapped to

User Space

mmap()’ed

pages

Stack, Heap pages

mmap()’ed pages with

MAP_ANONYMOUS

COW’ed pages for mmap() with

MAP_PRIVATE

Shmem pages

Unmapped
Pages in

page cache

Pages in swap cache

tmpfs pages

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 24

▪ What happens to each type of page frame on low mem.

• Kernel code

• Kernel data

• Page tables for user processes

• Kernel stack for user processes

• User code pages

• User data pages

• User heap/stack pages

• Files mmap’ed to user processes

• Page cache pages

▪ Page replacement policy chooses the pages to evict

Dropped or go to file system

Not swapped

Not swapped

Not swapped

Not swapped

Dropped

Dropped or swapped

Swapped

Dropped or go to file system

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 25

▪ LRU is expensive, why?

▪ Uses R (Reference) bit in each PTE

▪ Arranges all of physical frames in a big circle

▪ A clock hand is used to select a victim

• If (R == 1), turn in off and go to next page

(second chance)

• if (R == 0), evict the page

• Arm moves quickly when pages are needed

▪ If memory is large,“accuracy” of information

degrades

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 26

▪ For anonymous pages

▪ For file-mapped pages

Active Anon Inactive Anon

MRU LRU MRU LRU

new page

no ref
Scan

swap
ref >= 1

Scan

Active File

new page (refault-distance > working-set size)ref >= 1

no ref

MRU LRU MRU LRU
ref >= 2

Inactive File
ref <= 1

ScanScan

FS

new page (refault-distance <= working-set size)

