Jin-Soo Kim
(jinsoo.kim@snu.ac.kr)

Systems Software &
Architecture Lab.

Seoul National University

Spring 2019

Virtual Memory

Virtual Memory: Goals

" Transparency
* Processes should not be aware that memory is shared

* Provides a convenient abstraction for programming (a large, contiguous space)

= Efficiency
* Minimizes fragmentation due to variable-sized requests (space)
* Gets some hardware support (time)

* Protection
* Protect processes and the OS from another process
* Isolation: a process can fail without affecting other processes

* Cooperating processes can share portions of memory

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

(Virtual) Address Space

" Process’ abstract view of memory

* OS provides an illusion of private
address space to each process

* Contains all of the memory state of
the process

e Static area

— Allocated on exec()
— Code & Data

* Dynamic area
— Allocated at runtime
— Can grow or shrink
— Heap & stack

unused

read-only segment
(.init, .text, .rodata)

read/write segment
4 (.data, .bSS)

run-time heap
(managed by malloc)

l «— brk
T ~ stack
user stack pointer

(created at runtime)

memory
kernel virtual memory invisible to
- (code, data, heap, stack) | NGNS

Paging

= Allows the physical address space of a process to be noncontiguous
* Divide virtual memory into blocks of same size (pages)
* Divide physical memory into fixed-size blocks (frames)
* Page (or frame) size is power of 2 (typically 512B — 8KB)

= Eases memory management
* OS keeps track of all free frames
* To run a program of size n pages, need to find n free frames and load the program
* Set up a page table to translate virtual to physical addresses
* No external fragmentation

Paging Example

Process
B

Process
A

Virtual memory

Frame 11

Page 3 — . Frame 10
Page 2 > U Frame 9
Page 1 — 141 Frame 8
Page O / Page Frame 7
tables Frame 6

Page 5 \ Frame 5
Page 4 ~— g Frame 4
Page 3 > 10 Frame 3
Page 2 — (2) Frame 2
Page 1 7: : Frame 1
Page O Frame O

Address Translation

* Translating virtual addresses
* A virtual address has two parts: _
<VPN, Offset>

VPN is an index into the page table

Page table determines Page Frame Number (PFN)
Physical address is <PFN, Offset>
Usually, [VPN| >= |PFN|

= Page tables

y Managed b)’ OS ‘ Paﬁe Frame Number ‘PFNI _

* Map VPN to PFN
* One Page Table Entry (PTE) per page in virtual address space

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 6

Demand Paging

= OS uses main memory as a (page) cache of all the data allocated by
processes in the system
* Bring a page into memory only when it is needed
* Pages can be evicted from their physical memory frames
* Evicted pages go to disk (only dirty pages are written)
* Movement of pages is transparent to processes

" Benefits
* Less I/O needed
* Less memory needed
* Faster response

* More processes

Page Fault

= An exception raised by CPU when accessing invalid PTE
* Major page faults

* The page is valid but not loaded into memory

 OS maintains information on where to find the contents
* Require disk I/Os

= Minor page faults
* Page faults can be resolved without disk I/O
* Used for lazy allocation (e.g. accesses to stack & heap pages)

* Accesses to prefetched pages, etc.

* |nvalid page faults
* Segmentation violation: the page is not in use

Handling Page Fault

load M

page is on

backing store

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

-

<t

&
operating
system
reference
trap
% i
restart page table
instruction
free frame
reset page
table
physical
memory

_/

@

bring in
missing page

Paging: Pros

* No external fragmentation

" Fast to allocate and free
* A list or bitmap for free page frames
* Allocation: no need to find contiguous free space

* Free: no need to coalesce with adjacent free space

= Easy to “page out” portions of memory to disk
* Page size is chosen to be a multiple of disk block sizes
* Use valid bit to detect reference to “paged-out” pages

* Can run process when some pages are on disk

= Easy to protect and share pages

10

Paging: Cons

* |nternal fragmentation

* Wasted memory grows with larger pages

* Memory reference overhead
* Page table stored in memory
* Address translation increases latency
* Solution: get hardware support (TLBs)

* Storage needed for page tables
* Needs one PTE for each page in virtual address space
* 32-bit virtual address space with 4KB pages: 4MB per page table
* Page table for each process
* Solution: store valid PTEs only or page the page table

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

11

Four-level Page Table

* |A-32e paging mode in Intel 64
* 48-bit “linear” address => 52-bit physical address (4KB page)

Linear Address

47 39 38 30 29 2120 12 11 0
| PML4 ‘ Directory Ptr ‘ Directory ‘ Table ‘ Offset |
9 9
9 12 4-KByte Page
L Physical Addr
PTE >
Page-Directory- PDE with PS=0 40
Pointer Table 40 Page Table
Page-Directory
"> PDPTE 40
9
40
Page Map L pML4E
Level 4

\

40

CR3

Five-level Page Table (planned)

Linear Address

= 57-bit virtual address space s a7 3938 30 20 21 20 12 11
PML5 PML4 Directory Ptr Directory Table Offset
= S ted by Li — f
upported by Linux o . 9
. /9 12 4-KByte Page
since 4.14 E Physical Addr
—»| PDE Iy
> PDPTE 40
40 Page Directory
Page-Directory 40
> 40 Pointer Table
PML4E
A9
~ PTE —
40
> PMLSE Page Table
>
40

CR3

ARMyv7 Page Tables (without LPAE)

[Hindex 1 2index | offset 1 virtual address

TTBRO
or
TTBR1

12 bits 8 bits
Translation table

Coarse page table

4096 entries (16KB)

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

256 entries (1KB)
1MB
_(bit18=1) [10/— -
>
__reserved |11 -

supersection

—

64KB
large page

4KB
small page

14

TLB

* Translation Lookaside Buffer
* A hardware cache of popular virtual-to-physical address translations

* Essential component which makes virtual memory possible

= TLB exploits locality

* Temporal locality: an instruction or data item that has been recently accessed will
likely be re-accessed soon
— Instructions and data accesses in loops, ...
* Spatial locality: if a program accesses memory at address x, it will likely soon access

memory near x
— Code execution, array traversal, stack accesses, ...

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

15

TLB Organization

= TLB is implemented in hardware
* Processes only use a handful of pages at a time
— 16~256 entries in TLB is typical

* Usually fully associative
— All entries looked up in parallel
— But may be set associative to reduce latency

* Replacement policy: LRU (Least Recently Used)

* CPU knows where page tables are in memory (PTBR)
— e.g. CR3 (or PDBR) register in x86

Valid Tag (VPN) Value (PTE)
* TLB actually caches the whole 1 0x1000 [V |[R|[M]| Prot PFN 0x1234
PTEs, not just PFNs 1 0x2400 |V]|R[M] Prot PEN 0x8800

0

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

16

TLB on Context Switch

= Flush TLB on each context switch

* TLB is flushed automatically when PTBR is changed in a hardware-managed TLB
* Some architectures support the pinning of pages into TLB

— For pages that are globally-shared among processes (e.g. kernel pages)
— MIPS, Intel, etc.

* Track which entries are for which process
* Tag each TLB entry with an ASID (Address Space ID)
A privileged register holds the ASID of the current process
MIPS / ARMv7-A support 8-bit ASID
ARMvV8-A supports 8-bit/| 6-bit ASID
Intel 64 supports 12-bit PCID (Process Context ID) — Since Westmere (2010)

4190.568 Advance d Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

17

TLB Performance

* TLB is the source of many performance problems

* Performance metric: hit rate, lookup latency, ...

" Increase TLB reach (= # TLB entries * Page size)
* Increase the page size: e.g. 2MB/1GB in Intel 64, 4KB/|16KB/64KB in ARMv8
* Increase the TLB size

= Use multi-level TLBs

* e.g. Intel Haswell (4KB pages):
LI ITLB 128 entries (4-way), LI DTLB 64-entries (4-way) +
L2 STLB 1024 entries (8-way)

* Change your algorithms and data structures to be TLB-friendly

18

Kernel Page-Table Isolation (KPTI)

* To mitigate Meltdown vulnerability
" Separate page table for kernel

= Minimal kernel space for syscall,
page fault & interrupt handling

* Merged in 4.15
= CONFIG_PAGE_TABLE_ISOLATION=Y
= Disabled by ‘nopti’ at boot time

= PCID becomes critical to the
performance

Kernel space

User space

Kernel space
Kernel space
User space User space
(NX)

ser mode
Kernel mode

Kemel mode

User mode

19

Swapping: Where to Swap

= Swap space
* Disk space reserved for moving pages back and forth

* The size of the swap space determines the maximum number of memory pages
that can be in use

* Block size is same as the page size
* Can be a dedicated partition or a file in the file system

PFNO PFN1 PFN2 PFN3

Physical ppDo | PD1 PD1 | PID2
Memory (VPNO) | (VPN1) | (VPN2) | (VPN O)

BlkO Blkl1 Blk2 Blk3 Blk4 Blk5 Blké Blk7

Swap pPDO PIDO - PD1 PID1 PID 2
Space (VPN1) (VPN2) (VPNO) (VPN 1) (VPN 1)

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

When to Swap

" Proactively based on thresholds
* OS wants to keep a small portion of memory free

 Two threshold values:
HW (high watermark) and LW (low watermark)

* A background thread called swap daemon (or page daemon) is responsible for

freeing memory
— e.g. kswapd in Linux

* If (# free pages < LW), the swap daemon starts to evict pages from physical
memory

* If (# free pages > HW), the swap daemon goes to sleep

* What if the allocation speed is faster than reclamation speed!?

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

21

Swapping in Linux

kswapd woken up kswapd sleeps

Allocating process
frees pages
synchronously

high_wmark_pages

Free pages

low_wmark_pages

min_wmark_pages

\ » time
Rate of page consumption is GFP_ATOMIC allocation

slowed by kswapd can go below min_wmark_pages
but still allocating too fast

22

- File Pages Anonymous Pages

Stack, Heap pages

mmap()’ed pages with
Mapped to mmap()'ed MAP_ANONYMOUS

User Space Pages COW’ed pages for mmap() with
MAP_PRIVATE

Shmem pages

Pages in Pages in swap cache

Unmapped

page cache tmpfs pages

What to Swap

* What happens to each type of page frame on low mem.

Kernel code — Not swapped

Kernel data — Not swapped

Page tables for user processes — Not swapped

Kernel stack for user processes — Not swapped

User code pages — Dropped

User data pages — Dropped or swapped

User heap/stack pages — Swapped

Files mmap’ed to user processes — Dropped or go to file system
Page cache pages — Dropped or go to file system

" Page replacement policy chooses the pages to evict

24

Page Replacement: Clock

* |RU is expensive, why!
= Uses R (Reference) bit in each PTE
= Arranges all of physical frames in a big circle

= A clock hand is used to select a victim

* If (R ==1),turn in off and go to next page
(second chance)

* if (R ==0), evict the page
* Arm moves quickly when pages are needed
* |f memory is large, “accuracy” of information
degrades

25

Linux Page Replacement (v5.x)

* For anonymous pages

new page

Active Anon Inactive Anon| Scan —> ref

MRU

/ LRU !

* For file-mapped pages

new page (refault-distance <= working-set size)

ref>=1 @

(ref>=1 new page (refault-distance > working-set size)
ve File

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

26

