
1

Large-Scale Shared GPU Clusters
for DL Training Workloads

Myeongjae Jeon

UNIST CSE

2

ML for Systems
Large-scale

Stream Processing

IoT

DC
ML

Performance

Reliability
Data ML

Performance

Reliability

Systems for ML

GPU cluster

Resource scheduling

Failure handing

Data/model sharing

Multi-tenancy

….

3

Resource management

Data management

Manycore

[ATC’17]

Fast memory

[ASPLOS’19]

Compression [ATC’18], Approximation [arxiv]

ML for Systems
Large-scale

Stream Processing

Long query

Short latency

M
L

[EuroSys’13, SIGIR’14,

ASPLOS’16]

Systems for ML

GPU cluster manager

[NSDI’19, ATC’19]

Efficient distributed training

[arxiv]

Focus today

Deep Learning at Enterprise

• Deep learning (DL) is popular
– Speech, Image, Ads, NLP, Web Search …

– 10.5× increase of DL training jobs in Microsoft

• DL training jobs require GPU
– 5× increase of GPU cluster scale in Microsoft[1]

4
[1]. Analysis of Large-Scale Multi-Tenant GPU Clusters for DNN Training Workloads. USENIC ATC 2019

Demands for Systems Supports

• Resource scheduling and mgnt
– Training on few-to-many GPUs

– High-speed network

• Failure handling
– Days to weeks of job run time

• Storage and data handling
– Identical training data

– Reusing checkpointed models

5

Cluster manager

Resource scheduling

Failure handing

Data/model sharing

Multi-tenancy

….

How to efficiently manage a GPU cluster for DL training jobs?

State-of-the-art DL Cluster Managers

6

Most used Microsoft trace[1], will be open for public soon!
[1]. Analysis of Large-Scale Multi-Tenant GPU Clusters for DNN Training Workloads. USENIC ATC 2019

Gandiva
[OSDI’18]

Philly
[ATC’19]

Optimus
[EuroSys’18]

Tiresias
[NSDI’19]

Objective Consolidation Consolidation Average JCT Average JCT

Job Property Any Any Converging Any

Scheduling
Algorithm

Time-sharing Locality-based SRTF Gittins Index

Input N/A Arrival time Remaining time
Attained
service

Widespread Support by Open Source

7

Outline

• Overall architecture of GPU cluster

• Comm cost of distributed training

• Strategy in Philly and Tiresias

• Raising a few issues for the future

– Comm efficiency

– Failure handling

– More accessibility on HW

8

Shared GPU Cluster Architecture

9

GPU cluster 100s of servers and thousands of GPUs

Server Server Server Server

Server Server Server Server

Cluster

Shared GPU Cluster Architecture

10

GPU cluster 100s of servers and thousands of GPUs

HDFS Distributed “shared” storage for training data (and models)

HDFS

Training
data

Server Server Server Server

Server Server Server Server

Cluster

Shared GPU Cluster Architecture

11

GPU cluster 100s of servers and thousands of GPUs

HDFS Distributed “shared” storage for training data (and models)

RM Managing system resources for jobs submitted online

HDFS

Training
data

Server Server Server Server

Server Server Server Server

Cluster

R
e

so
u

rc
e

 m
an

ag
e

r
R

e
so

u
rc

e
 m

an
ag

e
r

Shared GPU Cluster Architecture

12

Queues Resource allocation (i.e., number of GPUs) for each group

Fairness among groups (e.g., by Apache YARN’s Fair Scheduler)

Oversubscription: Allocate idle GPUs to a queue with additional demand

HDFS

Training
data

Server Server Server Server

Server Server Server Server

Cluster

R
e

so
u

rc
e

 m
an

ag
e

rQueue 1

Queue 2

Queue 3

Queue n

Job A

Job B

Place

Distributed Training in DL Clusters

13

Data parallelism has been most widely used

Train same model on distinct data

(+) Easier to parallelize

(–) High comm cost due to

frequent “model” sync

Network Cost in Data Parallel Training

14

workers # PS

92%

Communication taking 58% on average!

Key HW config

8 4-GPU servers

NVIDIA Titan Xp

56 Gbps InfiniBand

in different servers

↑cost

Network Cost in Data Parallel Training

15

7x slowdown

solo consol
using (3, 1) training

Key HW config

8 4-GPU servers

NVIDIA Titan Xp

56 Gbps InfiniBand

Jobs interfere each other while sharing network!

Outline

• Overall architecture of GPU cluster

• Comm cost of distributed training

• Strategy in Philly and Tiresias

• Raising a few issues for the future

– Comm efficiency

– Failure handling

– More accessibility

16

Deeper into Comm Heterogeneity

17

Server 0 Server 0

Server 1 Server 1

Server N Server N

Server 0

Server 1

Server N

…

Ethernet

… … …

InfiniBand Domain 0 InfiniBand Domain 1 InfiniBand Domain N

1. Intra-server GPU comm is only for 4 or 8 GPUs
2. High-speed network is rack-localized (optional)

Cluster

Job Placement in Philly

18

• Each server has 4 or 8 GPUs

→ Pack a job’s GPUs onto the smallest number of servers possible

• High-speed network channel is rack-localized

→ Pack a job’s GPUs within a single InfiniBand domain

Job placement must be locality-aware!

Resource Negotiation

19

R
e

so
u

rc
e

m

an
ag

e
r

A
p

p
lic

at
io

n

m
an

ag
e

r
#GPUs

Each job has AM to negotiate resources from RM

• CPU/memory assigned proportional to # of GPUs
– Simple to ML practioners; Easier resource packing

• Specific servers meeting the desired locality in a IB domain
– Leverage near-data affinity feature in existing Bigdata RMs

& server IDs
(in a IB domain)

Decentralized Approach

20
R

e
so

u
rc

e

m
an

ag
e

r

A
p

p
lic

at
io

n

m
an

ag
e

r
#GPUs

job
start/finish

Let each AM have the global view of the cluster

& server IDs
(in a IB domain)

refresh

Resource
tracker

cluster view

free GPU

occupied GPU

4-GPU server

External KV store

Scheduling Workflow

21

• Step 1: Make a request to RM
– Calculate # of servers & GPUs per server

• “Highest locality” at the beginning (i.e., using the fewest servers)

– Pick a rack that has such servers most available
– Pick servers to be placed

• Servers for better packing

• Step 2: Not all GPUs ready until timeout?
– Release any acquired GPUs and take a back-off

• Step 3: Retry the request
– Gradually “relax locality” constraints

• ↑ schedulibility at comm cost

Trade-off training efficiency
for higher workload consolidation

Avoid starvation

Philly’s Limitations

• ① Policy not targeting on
training performance

– ML practioners care about
job completion time (JCT)

• ② Locality constraints limit
job schedulability

– Not all distributed training
benefit from GPU locality

22

Tiresias Design Objectives

• ① Policy not targeting on
training performance

– ML practioners care about
job completion time (JCT)

• ② Locality constraints limit
job schedulability

– Not all distributed training
benefit from GPU locality

23
GPU Cluster

2

Scheduler

Free GPU

Occupied GPU

4-GPU machine

N N-GPU DL job

142

Placement Scheme

Queue

1

1

Minimize average JCT

Locality selectively

Easy to Predict Job Training Time?

• Job training time is useful when minimizing JCT
– Unknown before execution

• Can predict job training time
– Use the smooth loss curve of DL training jobs (Optimus [1])

24

⎯ DSSM ⎯ ResNet ⎯ Seq2Seq

Progress

N
o
rm

.
T

ra
in

.
L
o
ss

1.0

0.5

0.0

[1]. Optimus: An Efficient Dynamic Resource Scheduler for Deep Learning Clusters. EuroSys 2018

Progress
N

o
rm

.
T

ra
in

.
L
o
ss

1.0

0.5

0.0

⎯ Job1 ⎯ Job2

It’s hard to predict training time of DL jobs in many cases

Available Job Information

25

…?

1. Spatial: number of GPUs

2. Temporal: executed time (age)

Time1 2 3 4 5 6 7 8 9 10 110

G1

G2

G3

Executed time

of GPUs

Age-based Scheduler

• Gittins Index
– Need the distribution of job execution time

– Probability to complete in the near future based on current age

• 2D-Gittins Index policy
– Age calculated by attained service (# of GPUs × executed time)

– Prioritize a job that has the largest Gittins Index

26

…?

Time1 2 3 4 5 6 7 8 9 10 110

G1

G2

G3

Age (executed time)

of GPUs # of GPUs

0

0.2

0.4

0.6

0.8

0 1 2 3 4 5 6 7 8 9 10 11 12

2
D

-G
it
ti
n
s

In
d
ex

 V
al

u
e

Attained service

Service distribution: (4, 8,12)

Model Profile-based Placement

• Tensor size in DL models

– Large tensors cause network imbalance and contention

27

Si
ze

 (
M

B
)

0

100

200

300

400

500

600

Consolidated placement
is needed when the
model is highly skewed
in its tensor size

Outline

• Overall architecture of GPU cluster

• Comm cost of distributed training

• Strategy in Philly and Tiresias

• Raising a few issues for the future

– Comm efficiency

– Failure handling

– More accessibility

28

Mitigating Comm Cost

29

• Data-driven approaches
– Model compression

– Model quantization

– Model sync batching

→ often comes at the cost of accuracy loss

• Execution-driven approaches
– Comm-aware model parallelism

→ difficult to automate

Mitigating Comm Cost

30

- Size of parameters
- Layer output size
- Layer type

Cost model: e.g., normality testing

- Skewness factor
- Partitioning point

Si
ze

Layers

Automatic layer
placement & Exec

PS
worker

WorkerWorkerWorker

Activations and gradients

Compute-demand
layers

Memory-demand
layers

RALP Runtime

Si
ze

Layers

RALP ProfilerJob

• Automatic resource-aware layer placement using RALP

– Distributed training at low comm cost

Colocated with PS for
intra-server comm

Most GPUs Allocated ≠ Effectively Utilized

• “Effective” cluster utilization can be hurt by

1. Relaxed GPU locality

• GPU utilization of 16-GPU jobs: 2 nodes (43.66%) v.s. 8 nodes (28.56%)

• → Prioritize locality more? Colocate training jobs?

2. Effectiveness of the last epochs

• 75% jobs reach 0.1% of the best accuracy using only 40% of epochs

• → Trade-off the accuracy for large resource savings?

3. Training job failures

• Frequent for distributed training

31

Mitigating Job Failures

32

• Individual job: User errors in code and configuration

– Many independent components communicating each other

– Not strongly types languages

→ Pre-run the first iter on a single GPU (from a pool of cheaper GPUs)

• Across jobs: Input format error or corrupted inputs

– Difficult to prevent while generating data

→ Need input data blacklisting

SW & Trace, then HW is Accessible?

1. Own training infrastructure setup

– The number of GPUs in distributed training keeps increasing

• 32 (2016) → 128 (2017)

– 128 GPUs = $1M

2. Borrowing resources from cloud

– 128 GPUs for 12 hours = $5K

33

Having open platforms is more than necessary!

Summary

• Shared GPU cluster is coming popular for DL training

– Need to design cluster managers for diverse circumstance

• Network cost during distributed training is detrimental

– Worse with increasing use of many GPUs

– Cluster managers can mitigate the cost

• Many improvements are desired for better future

34

Writing a Systems Paper

• Factors evaluated in top systems conferences
– Novelty

– Performance improvement

– Important/Practical problem (motivating the work)

– How practical the solution is: Usability/Applicability/Generality

– …

• Strategy
– Try to address as many as possible, but….

– Novelty is nowadays difficult to meet, and people know….

35

Motivate Your Problem Comprehensively

• Measurement is the King (& reviewers want free lunch!)
– Comprehensive measurements while motivating the problem

• If work is about single-job optimization, motivate the problem considering
– How would it be running on a single machine?

– How would it be running on a small/large cluster?

– How would it be if network is shared with others

– …

– The same strategy applies to evaluation section
• Various scales

• Diverse parameters

• Interesting sensitivity tests

36

Pay Attention on Usability/Applicability/Generality

• I think this is the most important factor these days

• Take RALP as an example
– When I first met RALP, it was just partitioning CONV layers and FC

layers in CNN

– What I proposed
• RALP profiler for usability (automatic & selective partitioning) and

applicability (model-agnostic solution)

• RALP on other AI engines for applicability

• RALP on many GPUs and multi-point partitioning for generality

• What RALP can bring out in practice
– Mitigating network interference, resource saving v.s. higher perf, better cluster scheduler

37

Pay Attention on Usability/Applicability/Generality

• NOTE! Reviewers often challenge you for these aspects

• Support with data as much as possible!

– If you put some efforts (while not perfect), the reviewers will
appreciate it

• Many papers are on the borderline

• In many cases, reviewers reject papers as they do not agree on (or do not see
data on) how practical the solution “could be”

– I prefer to say even in texts (if I do not have time to get data) for one
or two very critical issues

38

Do NOT Underestimate Rebuttal

• My advisors used to address only a few points from reviews

– Never got positive feedback from rebuttal

• Try to address all concerns from reviews

– Then you will sometimes get positive feedback, and..

– Survive from borderline

• Consider prioritization and lookup efficiency in rebuttal

– First address common questions

– Then address individual questions for each reviewer

39

40

Thank You!
mjjeon@unist.ac.kr

mailto:mjjeon@unist.ac.kr

41

Comm Cost in Data Parallelism

42

• Periodic voluminous communication

– Workers running on multiple GPUs synchronize training progress

Bigdata analytics

Filter(x > 10)

Average()

Deep learning

↓ volume

GBs

Data parallelism is most widely used in DL clusters

43

2D-Gittins Index: Partial Information

of GPUs Duration Attained Service Gittins Index

J1 2 2 0 0.25

J2 1 8 0 0.25

J3 2 6 0 0.25

of GPUs Duration Attained Service Gittins Index

J1 2 2 4 0.2

J2 1 8 0 0.25

J3 2 6 0 0.25

of GPUs Duration Attained Service Gittins Index

J1 2 2 4 0.2

J2 1 8 4 0.2

J3 2 6 0 0.25

of GPUs Duration Attained Service Gittins Index

J1 2 2 4 0.2

J2 1 8 4 0.2

J3 2 6 4 0.2

of GPUs Duration Attained Service Gittins Index

J1 2 2 4 0.2

J2 1 8 8 0.125

J3 2 6 4 0.2

of GPUs Duration Attained Service Gittins Index

J1 2 2 4 0.2

J2 1 8 8 0.125

J3 2 6 12 N/A

(4, 8,12)

J1 end J2 end J3 end

Time1 2 3 4 5 6 7 8 9 10 110

G1

G2

12 13 14 15 16

Job switch Job switch

• Higher probability to complete (Gittins Index), higher priority

0

0.2

0.4

0.6

0.8

0 1 2 3 4 5 6 7 8 9 10 11 12

2
D

-G
it
ti
n
s

In
d
ex

 V
al

u
e

Attained service

Extra Information Avg. JCT

2D-Gittins Index GPU time distribution 10.0

2D-LAS None 11.7

Execution timeDistribution

Job Failures

• A job is retried upon failure

• A job is unsuccessful if it repeatedly fails

– Up to a pre-defined number of retries (e.g., 4 retries)

44

Observation 1:

Many failures by user/programming mistakes

• Primary factor:
– Many independent components

– Not strongly typed languages
45

31.7

25.4

7.7 7.6 6.8

0

10

20

30

40

CPU OOM Incorrect
inputs

Semantic
error

Core dump Invalid
mem

access

% of failure occurrences

Top 5 most
frequent failures

Observation 2:

Long RTF by infrequent infrastructural failures

46

Top 3 largest RTF

• Primary factor:

– Nondeterministic error in program-to-storage and program-to-
program communication

25.43

5.23

1.25

30.43

21.73

14.63

0

5

10

15

20

25

30

35

Incorrect inputs Model ckpt error MPI runtime failure

% Failures % RTF

Observation 3:

Long RTF by semantic error for larger jobs

47

• Primary factor:

– Send/receive/access data in an inconsistent way during model sync

30.43

9.22

21.73

14.63

24.21

17.06 16.33 15.34

0

10

20

30

40

Incorrect
inputs

Semantic
error

Model ckpt
error

MPI runtime
failure

% RTF % RTF x Demand

Top 4 largest
RTF x Demand

