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Deep Learning at Enterprise

• Deep learning (DL) is popular
– Speech, Image, Ads, NLP, Web Search … 

– 10.5× increase of DL training jobs in Microsoft

• DL training jobs require GPU
– 5× increase of GPU cluster scale in Microsoft[1]
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[1]. Analysis of Large-Scale Multi-Tenant GPU Clusters for DNN Training Workloads. USENIC ATC 2019



Demands for Systems Supports

• Resource scheduling and mgnt
– Training on few-to-many GPUs

– High-speed network

• Failure handling
– Days to weeks of job run time

• Storage and data handling
– Identical training data

– Reusing checkpointed models
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Cluster manager

Resource scheduling

Failure handing

Data/model sharing

Multi-tenancy

….

How to efficiently manage a GPU cluster for DL training jobs?



State-of-the-art DL Cluster Managers
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Most used Microsoft trace[1], will be open for public soon! 
[1]. Analysis of Large-Scale Multi-Tenant GPU Clusters for DNN Training Workloads. USENIC ATC 2019

Gandiva
[OSDI’18]

Philly
[ATC’19]

Optimus
[EuroSys’18]

Tiresias
[NSDI’19]

Objective Consolidation Consolidation Average JCT Average JCT

Job Property Any Any Converging Any

Scheduling
Algorithm

Time-sharing Locality-based SRTF Gittins Index

Input N/A Arrival time Remaining time
Attained
service



Widespread Support by Open Source
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Outline

• Overall architecture of GPU cluster

• Comm cost of distributed training

• Strategy in Philly and Tiresias

• Raising a few issues for the future

– Comm efficiency

– Failure handling

– More accessibility on HW
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Shared GPU Cluster Architecture
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GPU cluster 100s of servers and thousands of GPUs
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Shared GPU Cluster Architecture
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GPU cluster 100s of servers and thousands of GPUs

HDFS Distributed “shared” storage for training data (and models)

HDFS

Training 
data

Server Server Server Server

Server Server Server Server

Cluster



Shared GPU Cluster Architecture
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GPU cluster 100s of servers and thousands of GPUs

HDFS Distributed “shared” storage for training data (and models)

RM Managing system resources for jobs submitted online
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Shared GPU Cluster Architecture
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Queues Resource allocation (i.e., number of GPUs) for each group

Fairness among groups (e.g., by Apache YARN’s Fair Scheduler)

Oversubscription: Allocate idle GPUs to a queue with additional demand

HDFS

Training 
data
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Distributed Training in DL Clusters

13

Data parallelism has been most widely used

Train same model on distinct data

(+) Easier to parallelize

(–) High comm cost due to 

frequent “model” sync



Network Cost in Data Parallel Training
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# workers # PS

92%

Communication taking 58% on average!

Key HW config

8 4-GPU servers

NVIDIA Titan Xp

56 Gbps InfiniBand

in different servers

↑cost



Network Cost in Data Parallel Training
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7x slowdown

solo consol
using (3, 1) training

Key HW config

8 4-GPU servers

NVIDIA Titan Xp

56 Gbps InfiniBand

Jobs interfere each other while sharing network!



Outline

• Overall architecture of GPU cluster

• Comm cost of distributed training

• Strategy in Philly and Tiresias

• Raising a few issues for the future

– Comm efficiency

– Failure handling

– More accessibility
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Deeper into Comm Heterogeneity
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Server 0 Server 0

Server 1 Server 1

Server N Server N

Server 0

Server 1

Server N

…

Ethernet

… … …

InfiniBand Domain 0 InfiniBand Domain 1 InfiniBand Domain N

1. Intra-server GPU comm is only for 4 or 8 GPUs
2. High-speed network is rack-localized (optional)

Cluster



Job Placement in Philly
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• Each server has 4 or 8 GPUs

→ Pack a job’s GPUs onto the smallest number of servers possible

• High-speed network channel is rack-localized

→ Pack a job’s GPUs within a single InfiniBand domain

Job placement must be locality-aware! 



Resource Negotiation
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Each job has AM to negotiate resources from RM

• CPU/memory assigned proportional to # of GPUs
– Simple to ML practioners; Easier resource packing

• Specific servers meeting the desired locality in a IB domain
– Leverage near-data affinity feature in existing Bigdata RMs

& server IDs
(in a IB domain)



Decentralized Approach
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Scheduling Workflow
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• Step 1: Make a request to RM
– Calculate # of servers & GPUs per server

• “Highest locality” at the beginning (i.e., using the fewest servers)

– Pick a rack that has such servers most available
– Pick servers to be placed

• Servers for better packing

• Step 2: Not all GPUs ready until timeout?
– Release any acquired GPUs and take a back-off

• Step 3: Retry the request
– Gradually “relax locality” constraints

• ↑ schedulibility at comm cost

Trade-off training efficiency
for higher workload consolidation

Avoid starvation



Philly’s Limitations

• ① Policy not targeting on 
training performance

– ML practioners care about  
job completion time (JCT)

• ② Locality constraints limit 
job schedulability

– Not all distributed training 
benefit from GPU locality
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Tiresias Design Objectives

• ① Policy not targeting on 
training performance

– ML practioners care about  
job completion time (JCT)

• ② Locality constraints limit 
job schedulability

– Not all distributed training 
benefit from GPU locality
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GPU Cluster

2

Scheduler

Free GPU

Occupied GPU

4-GPU machine

N N-GPU DL job
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Placement Scheme

Queue

1

1

Minimize average JCT

Locality selectively



Easy to Predict Job Training Time?

• Job training time is useful when minimizing JCT
– Unknown before execution

• Can predict job training time
– Use the smooth loss curve of DL training jobs (Optimus [1])
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[1]. Optimus: An Efficient Dynamic Resource Scheduler for Deep Learning Clusters. EuroSys 2018
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It’s hard to predict training time of DL jobs in many cases



Available Job Information
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…?

1. Spatial: number of GPUs

2. Temporal: executed time (age)

Time1 2 3 4 5 6 7 8 9 10 110

G1

G2

G3

Executed time

# of GPUs



Age-based Scheduler

• Gittins Index
– Need the distribution of job execution time

– Probability to complete in the near future based on current age

• 2D-Gittins Index policy
– Age calculated by attained service (# of GPUs × executed time)

– Prioritize a job that has the largest Gittins Index
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Model Profile-based Placement

• Tensor size in DL models

– Large tensors cause network imbalance and contention
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Outline

• Overall architecture of GPU cluster

• Comm cost of distributed training

• Strategy in Philly and Tiresias

• Raising a few issues for the future

– Comm efficiency

– Failure handling

– More accessibility
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Mitigating Comm Cost
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• Data-driven approaches
– Model compression

– Model quantization

– Model sync batching

→ often comes at the cost of accuracy loss

• Execution-driven approaches
– Comm-aware model parallelism

→ difficult to automate



Mitigating Comm Cost
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- Size of parameters
- Layer output size
- Layer type

Cost model: e.g., normality testing

- Skewness factor
- Partitioning point

Si
ze

Layers

Automatic layer 
placement & Exec

PS 
worker

WorkerWorkerWorker

Activations and gradients

Compute-demand
layers

Memory-demand
layers

RALP Runtime

Si
ze

Layers

RALP ProfilerJob

• Automatic resource-aware layer placement using RALP

– Distributed training at low comm cost

Colocated with PS for 
intra-server comm



Most GPUs Allocated ≠ Effectively Utilized

• “Effective” cluster utilization can be hurt by

1. Relaxed GPU locality

• GPU utilization of 16-GPU jobs: 2 nodes (43.66%) v.s. 8 nodes (28.56%)

• → Prioritize locality more? Colocate training jobs?

2. Effectiveness of the last epochs

• 75% jobs reach 0.1% of the best accuracy using only 40% of epochs

• → Trade-off the accuracy for large resource savings?

3. Training job failures

• Frequent for distributed training
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Mitigating Job Failures
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• Individual job: User errors in code and configuration

– Many independent components communicating each other

– Not strongly types languages

→ Pre-run the first iter on a single GPU (from a pool of cheaper GPUs)

• Across jobs: Input format error or corrupted inputs

– Difficult to prevent while generating data

→ Need input data blacklisting



SW & Trace, then HW is Accessible?

1. Own training infrastructure setup

– The number of GPUs in distributed training keeps increasing

• 32 (2016) → 128 (2017)

– 128 GPUs = $1M

2. Borrowing resources from cloud

– 128 GPUs for 12 hours = $5K

33

Having open platforms is more than necessary!



Summary

• Shared GPU cluster is coming popular for DL training

– Need to design cluster managers for diverse circumstance

• Network cost during distributed training is detrimental

– Worse with increasing use of many GPUs

– Cluster managers can mitigate the cost

• Many improvements are desired for better future
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Writing a Systems Paper

• Factors evaluated in top systems conferences
– Novelty

– Performance improvement

– Important/Practical problem (motivating the work)

– How practical the solution is: Usability/Applicability/Generality

– …

• Strategy
– Try to address as many as possible, but….

– Novelty is nowadays difficult to meet, and people know….
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Motivate Your Problem Comprehensively

• Measurement is the King (& reviewers want free lunch!)
– Comprehensive measurements while motivating the problem

• If work is about single-job optimization, motivate the problem considering
– How would it be running on a single machine?

– How would it be running on a small/large cluster?

– How would it be if network is shared with others

– …

– The same strategy applies to evaluation section
• Various scales

• Diverse parameters

• Interesting sensitivity tests
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Pay Attention on Usability/Applicability/Generality

• I think this is the most important factor these days

• Take RALP as an example
– When I first met RALP, it was just partitioning CONV layers and FC 

layers in CNN

– What I proposed
• RALP profiler for usability (automatic & selective partitioning) and 

applicability (model-agnostic solution)

• RALP on other AI engines for applicability

• RALP on many GPUs and multi-point partitioning for generality 

• What RALP can bring out in practice
– Mitigating network interference, resource saving v.s. higher perf, better cluster scheduler
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Pay Attention on Usability/Applicability/Generality

• NOTE! Reviewers often challenge you for these aspects

• Support with data as much as possible!

– If you put some efforts (while not perfect), the reviewers will 
appreciate it

• Many papers are on the borderline

• In many cases, reviewers reject papers as they do not agree on (or do not see 
data on) how practical the solution “could be”

– I prefer to say even in texts (if I do not have time to get data) for one 
or two very critical issues
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Do NOT Underestimate Rebuttal

• My advisors used to address only a few points from reviews

– Never got positive feedback from rebuttal

• Try to address all concerns from reviews

– Then you will sometimes get positive feedback, and..

– Survive from borderline

• Consider prioritization and lookup efficiency in rebuttal

– First address common questions

– Then address individual questions for each reviewer

39



40

Thank You!
mjjeon@unist.ac.kr

mailto:mjjeon@unist.ac.kr
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Comm Cost in Data Parallelism
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• Periodic voluminous communication

– Workers running on multiple GPUs synchronize training progress

Bigdata analytics

Filter(x > 10)

Average()

Deep learning

↓ volume

GBs

Data parallelism is most widely used in DL clusters 
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2D-Gittins Index: Partial Information

# of GPUs Duration Attained Service Gittins Index

J1 2 2 0 0.25

J2 1 8 0 0.25

J3 2 6 0 0.25

# of GPUs Duration Attained Service Gittins Index

J1 2 2 4 0.2

J2 1 8 0 0.25

J3 2 6 0 0.25

# of GPUs Duration Attained Service Gittins Index

J1 2 2 4 0.2

J2 1 8 4 0.2

J3 2 6 0 0.25

# of GPUs Duration Attained Service Gittins Index

J1 2 2 4 0.2

J2 1 8 4 0.2

J3 2 6 4 0.2

# of GPUs Duration Attained Service Gittins Index

J1 2 2 4 0.2

J2 1 8 8 0.125

J3 2 6 4 0.2

# of GPUs Duration Attained Service Gittins Index

J1 2 2 4 0.2

J2 1 8 8 0.125

J3 2 6 12 N/A

(4, 8,12)

J1 end J2 end J3 end

Time1 2 3 4 5 6 7 8 9 10 110

G1

G2

12 13 14 15 16

Job switch Job switch

• Higher probability to complete (Gittins Index), higher priority
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Job Failures

• A job is retried upon failure

• A job is unsuccessful if it repeatedly fails

– Up to a pre-defined number of retries (e.g., 4 retries)
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Observation 1: 

Many failures by user/programming mistakes 

• Primary factor:
– Many independent components

– Not strongly typed languages
45
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Observation 2: 

Long RTF by infrequent infrastructural failures
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Top 3 largest RTF

• Primary factor:

– Nondeterministic error in program-to-storage and program-to-
program communication
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Observation 3: 

Long RTF by semantic error for larger jobs
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• Primary factor:

– Send/receive/access data in an inconsistent way during model sync
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