Strata: A Cross Media File System

Youngjin Kwon KAIST

with Henrigue Fingler, Tyler Hunt,
Simon Peter, Emmett Witchel, Thomas Anderson

UNIVERSITY of
WASHINGTON

The University of Texas at Austin

&

1

Operating
system

Hypervisor

My research

File system

Memory system

Memory system

Virtualized 10

Scheduler

Strata: A Cross Media File System
[SOSP 2017]

Ingens: Efficient Huge Page Management
[OSDI 2016]

Sego: Hypervisor for Untrusted OS
[ASPLOS 2016]

Virtualizing Asymmetric Multi-cores
[ISCA 2011]

Let’s build a fast server

NoSQL store, Database, File server, Mail server ...

Requirements

* Small updates (1 Kbytes) dominate
* Dataset scalesupto 10 TB

* Updates must be crash consistent

Storage diversification

Byte-addressable: cache-line granularity 10

Latency $/GB

DR M 80 ns 35.1
NVM 170 ns 4.5
SSD 10 us 0.48
HDD 10 ms 0.02

Better performance
Higher capacity

Large erasure blocks need to be sequentially written
Random writes: 5~6x slowdown due to GC [FAST’15]

A fast server on today's file system

P ¢ Small updates (1 Kbytes) dominate
* Dataset scales up to 10TB
* Updates must be crash consistent

Small, random IO is slow!

Application

O latency (us)

Kernel file system

0 1.5 3 4.5 6
= Write to device m Kernel code

NVM Is so fast that kernel 1s the bottleneck

A fast server on today's file system

 Small updates (1 Kbytes) dominate
=P ¢ Dataset scales up to 10TB

* Updates must be crash consistent
Need huge capacity, but

NVM alone is too expensive!
($40K for 10TB)

Application

Kernel file system

For low-cost capacity with high performance,

must leverage multiple device types

A fast server on today's file system

 Small updates (1 Kbytes) dominate
=P ¢ Dataset scales up to 10TB
* Updates must be crash consistent

- ®* Block-level caching manages data in blocks,
AfpplieEiien but NVM is byte-addressable
®* Extralevel of indirection

Kernel file system

m NOVA m Block-level caching
Block-level caching IO latency (us)

Block-level caching is too slow

A fast server on today's file system

 Small updates (1 Kbytes) dominate
* Dataset scales up to 10TB
-—pP o Updates must be crash consistent

Crash vulnerabilities
SQLite
HDFS
ZooKeeper
LevelDB
HSQLDB
Mercurial
Git

Applications struggle for crash consistency

Problems in today's file systems

* Kernel mediates every operation
NVM iIs so fast that kernel is the bottleneck

* Tied to a single type of device

For low-cost capacity with high performance,
must leverage multiple device types

NVM (soon), SSD, HDD

* Aggressive caching in DRAM,
write to device only when you must (fsync)

Applications struggle for crash consistency

Strata:
A Cross Media File System

Performance: especially small, random 10
* Fast user-level device access

Low-cost capacity: leverage NVM, SSD & HDD
®* Transparent data migration across different storage media
® Efficiently handle device 10 properties

Simplicity: intuitive crash consistency model
® In-order, synchronous IO
®* No fsync() required

Strata’'s main design principle

LIDFS

Togloperations to NvM atfuser ievel]

. Performance: Kernel bypas but private
Simplicity: Intuitive crash consistency

KernelFS [Digestland migrate data in[kernel]

Coordinate multi-process accesses
Apply log operations to shared data

11

Outline

®* LibFS: Log operations to NVM at user-level
®* Fast user-level access
® In-order, synchronous IO

®* KernelFS: Digest and migrate data in kernel
®* Asynchronous digest
®* Transparent data migration
® Shared file access

® Evaluation

12

Log operations to NVM at user-level

unmodified

application ® Fast writes
Pgﬁ'ﬁf' ® Directly access fast NVM
LibFS _
| ®* Sequentially append data
kernel, * Cache-line granularity
bypass
R AR LR LR, ._ o Bllnd ertes
Private operation log
NVM | | . ® Crash consistency
5 B ®* On crash, kernel replays log

-
-
-
~ -

creat write rename

File operations (data & metadata)

13

Intuitive crash consistency

unmodified
application
POSIX AP ® When each system call returns:

Strata: _
LibFS ® Data/metadata is durable

® In-order update

Kernel-
Synchronous IO . .
bypass | > 45 ®* Atomic write
Prlvateoperatlonlog ... e Limited size (log size)
wul | fsyncQis no-op

Fast synchronous IO: NVM and kernel-bypass

14

Crash consistency example

®* File system: EXT4 (ordered mode)
® Assume storage can update 1B atomically

[strata/file [strata/file
Update

Goal Foo ———— Bar

Possible cases

1. A single write Fao
write(/strata/file, “Bar”) Not atomic!

For

15

Crash consistency example

2. Rollback logging
creat(/strata/log)

write(/strata/log, “Foo”) ™ Reordered
write(/strata/file, “Bar”) and

unlink(/strata/log)

3. Rollback logging with ordering

creat(/strata/log)

write(/strata/log, “Foo”)
fsync(/strata/log)

write(/strata/file, “Bar”

fsync(/strata/file)
unlink(/strata/log)

Possible cases

0]

Possible cases

[strata/ may not contain
/strata/log

Strata: In-order, synchronous IO
with atomicity

4. Correct version

EXT4. Strata:
creat(/strata/log) write(/strata/file, “Bar”)
write(/strata/log, “Foo”) That’s it!
fsync(/strata/log)
fsync(/strata/)

write(/strata/file, “Bar”)
fsync(/strata/file)
unlink(/strata/log)

Must understand
atomicity, ordering, and durability
(including directory)

17

Outline

®* LibFS: Log operations to NVM at user-level
®* Fast user-level access
® |In-order, synchronous IO

®* KernelFS: Digest and migrate data in kernel
®* Asynchronous digest
®* Transparent data migration
®* Shared file access

® Evaluation

18

Digest data In kernel

Application ®* Visibility:

POSIX API make private log visible
Strata:

LibES to other applications

®* Data layout:
turn write-optimized to

| _ read-optimized format
Private operation log NVM Shared area (extent tree)

NVM ‘ ®* Large, batched 10

Digest ®* Coalesce log

19

Digest optimization;
Log coalescing

SQLite, Mall server: crash consistent update using write ahead logging

Application Digest eliminates unneeded work Strata
Strata: > :
_ KernelFS
LibFS Remove
temporary durable writes
Private operation log NVM Shared area

Create journal file
Write data to journal file
Write data to database file
Delete journal file

Throughput optimization:

Write data to database file

Log coalescing saves |10 while digesting

20

Digest and migrate data In kernel

Application

Strata:
LIbFS

Strata:
KernelFS

Private operation log NVM Shared area :

21

Digest and migrate data In kernel

Application

®* Low-cost capacity
Strata: _
LibFS ®* KernelFS migrates cold data

to lower layers
Strata:
KernelFS
. ® Handle device 10 properties

NVM Shared area

| * Migrate 1 GB blocks

collection overhead
EE

22

SSD garbage
collection overhead

Random overwrite

064 MB 128 MB 0256 MB
0512 MB 01024 MB
_.1250
0
= 1000
3 750 5-6x difference
S by hardware GC
o 500
= 250
0p]
p)

o

0.1 0.25 0.5 0.6 0.7 0.8 0.9 1
SSD utilization

Large, sequential writes avoid GC

23

Digest and migrate data In kernel

Application * Low-cost capacity
Strata: _
LibFS ®* KernelFS migrates cold data
to lower layers
Strata:
KernelFS
OO OOOOIINoeerreeee v eees s erees e mrreeseed . ® Handle device 10 groperties

Private operation log NVM Shared area :

Log | * Migrate 1 GB blocks

SSD data collection overhead
HDD Shared area |
HDD data

Higher layers always have up-to-date data

24

Read: hierarchical search

Application

Strata:
LibFS

Strata:

KernelFS

Search order
Private OP loo

NVM Shared areaé
Log data .

{ 3
i SSD data
P HDD Shared area
1 HDD data

--

25

Shared file access

®* Leases grant access rights to applications [sospg9;
®* Required for files and directories
® Function like lock, but revocable
® Exclusive writer, shared readers

Example: concurrent writes to the same file A

Application 1 @ Application 2
LIbFS

Requgst write leageequiest write lease to file A
to file A

1A data
Write file A datal Revoke the wrife lease

Outline

®* LiIbFS: Log operations to NVM at user-level
®* Fast user-level access
® In-order, synchronous IO

®* KernelFS: Digest and migrate data in kernel
® Asynchronous digest
®* Transparent data migration
® Shared file access

® Evaluation

27

Experimental setup

. 2X Intel Xeon E5-2640 CPU, 64 GB DRAM

- 400 GB NVMe SSD, 1 TB HDD

- Ubuntu 16.04 LTS, Linux kernel 4.8.12

- Emulated NVM

. Use 40 GB of DRAM
. Performance model [v. zhang et al. MSST 2015]

. Throttle latency & throughput in software

28

Evaluation questions

® Latency:
®* Does Strata efficiently support small, random writes?

®* Does asynchronous digest have an impact on latency?

29

Related work

®* NVM file systems

. PMFS[EuroSys 14]. In-place update file system

. NOVAJ[FAST 16]. log-structured file system
EXT4-DAX: NVM support for EXT4

® SSD file system

F2FS[FAST 15]. log-structured file system

30

Microbenchmark:
write latency

* Strata logs to NVM m Strata 2 PMES
®* Compare to NVM kernel file 'NO\l/f‘ - Eng-DAX o
systems: 10
PMFS, NOVA, EXT4-DAX
8
o
14
¢ Strata, NOVA @

(sn) Aouaje
(@)

® In-order, synchronous IO
* Atomic write Avg.: 26% better
il - 420 2
* PMFS. EXT4-DAX Tail : 43% better

* No atomic write T eE 1kB 4KB 16KB

IO size

32

Latency: LevelDB

* LevelDB (NVM)

® Keysize: 16 B m Strata mPMFS
* Value size: 1 KB ENOVA EXT4-DAX
_ oy 35:249.2 37.7
® 300,000 objects
@
® Workload causes &

N
o

asynchronous digests

25% bette

(sn) AouareT

® Fast user-level logging

S
o

®* Random write

® 25% better than PMFS -

O latency not iImpacted b.y asynchronous digest

34

Evaluation questions

® Throughput:

® Strata writes data twice (logging and digesting).
Can Strata sustain high throughput?

®* How well does Strata perform
when managing data across storage layers?

35

Throughput: Varmall

No kernel file system has both low latency and high throughput:
 PMFS: better latency
 NOVA: better throughput

Strata achieves both low latency and high throughput

Strata
PMFS
NOVA
EXT4-DAX

29% better

Better
OK 100K 200K 300K 400K

Log coalescing eliminates 86% of log entries, saving 14 GB of IO

36

Throughput: data migration

File server workload from Filebench
- Working set starts at NVM, grows to SSD, HDD

- Read/Write ratio is 1:2 22% faster than
User-level migration user-level migration
- LRU: whole file granularity Cross layer optimization:
. Treat each file system as a black-box | placing hot metadata

. NVM: NOVA, SSD: F2FS, HDD: EXT4 | In faster layers
Block-level caching

- Linux LVM cache, formatted with F2FS
Avg. throughput (ops/s)

Strata
User-level migration

Block-level caching 2X faster

K 2K 4K oK 8K 10K

37

Before concluding strata,
let's re-evaluate design

Good system research should
have

Timely problem
Principled approach

General solution

43

Timely problem?

®* Does Strata address system issues for emerging
technologies?

®* Does Strata address recent applications’ requirement?

45

Principled approach?

®* Show me a sentence or a table to describe your system

Previous systems Strata

Performance Use complex kernel Kernel-bypass

: : Asynchronous
Low-cost Designed for a single .. -
capacity type of storage digestseriTransparent data
migration

Complex crash
consistency

Simplicity

In-order, synchronous 1O

46

General solution?

® |s Strata a general purpose file system?

® Does Strata work with only NVM?

® Does Strata work with only SSD?

47

Conclusion

Server applications need fast, small random IO on vast datasets
with intuitive crash consistency

Strata, a cross media file system, addresses these concerns

Performance: low latency, high throughput

* Novel split of LIbFS, KernelFS
* [ast user-level access

Low-cost capacity: leverage NVM, SSD & HDD

® Asynchronous digest
®* Transparent data migration with large, sequential IO

Simplicity: intuitive crash consistency model
® In-order, synchronous IO
Source code Is available at

https://github.com/ut-osa/strata
https://github.com/Dahca/strata (active)

https://github.com/ut-osa/strata
https://github.com/Dahca/strata

