
Strata: A Cross Media File System

1

Youngjin Kwon

with Henrique Fingler, Tyler Hunt,

Simon Peter, Emmett Witchel, Thomas Anderson

Operating

system

Hypervisor

Memory system

File system

Scheduler

Memory system

Virtualized IO

Virtualizing Asymmetric Multi-cores

[ISCA 2011]

Sego: Hypervisor for Untrusted OS

[ASPLOS 2016]

Strata: A Cross Media File System

[SOSP 2017]

Ingens: Efficient Huge Page Management

[OSDI 2016]

My research

2

Let’s build a fast server

3

Requirements

• Small updates (1 Kbytes) dominate

• Dataset scales up to 10 TB

• Updates must be crash consistent

NoSQL store, Database, File server, Mail server …

Storage diversification

Latency $/GB

DRAM 80 ns 35.1

NVM 170 ns 4.5

SSD 10 us 0.48

HDD 10 ms 0.02 B
e
tt
e
r

p
e
rf

o
rm

a
n
c
e

H
ig

h
e
r

c
a
p
a
c
it
y

4

Large erasure blocks need to be sequentially written

Random writes: 5~6x slowdown due to GC [FAST’15]

Byte-addressable: cache-line granularity IO

Application

A fast server on today’s file system

5

Small, random IO is slow!

• Small updates (1 Kbytes) dominate

• Dataset scales up to 10TB

• Updates must be crash consistent

91%
Kernel file system

NVM 0 1.5 3 4.5 6

1 KB

IO latency (us)

Write to device Kernel code

91%

Kernel file system:

NOVA [FAST 16, SOSP 17]NVM is so fast that kernel is the bottleneck

A fast server on today’s file system

6

• Small updates (1 Kbytes) dominate

• Dataset scales up to 10TB

• Updates must be crash consistent

Need huge capacity, but

NVM alone is too expensive!

($40K for 10TB)

Kernel file system

NVM

Application

For low-cost capacity with high performance,

must leverage multiple device types

A fast server on today’s file system

7

• Small updates (1 Kbytes) dominate

• Dataset scales up to 10TB

• Updates must be crash consistent

• Block-level caching manages data in blocks,

but NVM is byte-addressable

• Extra level of indirection

Block-level caching

NVM

SSD

HDD

Kernel file system

Application

0 3 6 9 12 15

1 KB

IO latency (us)
NOVA Block-level caching

Block-level caching is too slow

A fast server on today’s file system

8

• Small updates (1 Kbytes) dominate

• Dataset scales up to 10TB

• Updates must be crash consistent

Pillai et al., OSDI 2014

0 2 4 6 8 10 12

SQLite
HDFS

ZooKeeper
LevelDB

HSQLDB
Mercurial

Git

Crash vulnerabilities

Applications struggle for crash consistency

Problems in today’s file systems

9

• Kernel mediates every operation

NVM is so fast that kernel is the bottleneck

• Tied to a single type of device

For low-cost capacity with high performance,

must leverage multiple device types

NVM (soon), SSD, HDD

• Aggressive caching in DRAM,

write to device only when you must (fsync)

Applications struggle for crash consistency

Strata:

A Cross Media File System

10

Performance: especially small, random IO

• Fast user-level device access

Low-cost capacity: leverage NVM, SSD & HDD

• Transparent data migration across different storage media

• Efficiently handle device IO properties

Simplicity: intuitive crash consistency model

• In-order, synchronous IO

• No fsync() required

Strata’s main design principle

Log operations to NVM at user-level

Simplicity: Intuitive crash consistency

Performance: Kernel bypass, but private

Coordinate multi-process accesses

11

Digest and migrate data in kernel

Apply log operations to shared data

LibFS

KernelFS

Outline

• LibFS: Log operations to NVM at user-level

• Fast user-level access

• In-order, synchronous IO

• KernelFS: Digest and migrate data in kernel

• Asynchronous digest

• Transparent data migration

• Shared file access

• Evaluation

12

Log operations to NVM at user-level

13

• Fast writes

• Directly access fast NVM

• Sequentially append data

• Cache-line granularity

• Blind writes

unmodified

application

Strata:

LibFS

Kernel-

bypass

NVM

POSIX API

Private operation log

creat write …

File operations (data & metadata)

• Crash consistency

• On crash, kernel replays log

rename

unmodified

application

Intuitive crash consistency

14

Strata:

LibFS

Kernel-

bypass

NVM

Synchronous IO

• When each system call returns:

• Data/metadata is durable

• In-order update

• Atomic write

• Limited size (log size)

POSIX API

Fast synchronous IO: NVM and kernel-bypass

Private operation log

fsync() is no-op

Crash consistency example

15

Foo Bar
Update

/strata/file /strata/file

Goal

write(/strata/file, “Bar”)

1. A single write

• File system: EXT4 (ordered mode)

• Assume storage can update 1B atomically

Fao

For

…

Not atomic!

Possible cases

16

write(/strata/log, “Foo”)

2. Rollback logging

creat(/strata/log)

write(/strata/file, “Bar”)

unlink(/strata/log)

write(/strata/log, “Foo”)

3. Rollback logging with ordering

creat(/strata/log)

write(/strata/file, “Bar”)

unlink(/strata/log)

fsync(/strata/log)

fsync(/strata/file)

Fao

For

…
/strata/ may not contain

/strata/log

Possible cases

Crash consistency example

Reordered

and

Fao

For

…

Possible cases

17

write(/strata/log, “Foo”)

4. Correct version

creat(/strata/log)

write(/strata/file, “Bar”)

unlink(/strata/log)

fsync(/strata/log)

fsync(/strata/file)

fsync(/strata/)

Must understand

atomicity, ordering, and durability

(including directory)

Strata: In-order, synchronous IO

with atomicity

EXT4: Strata:

write(/strata/file, “Bar”)

That’s it!

Outline

• LibFS: Log operations to NVM at user-level

• Fast user-level access

• In-order, synchronous IO

• KernelFS: Digest and migrate data in kernel

• Asynchronous digest

• Transparent data migration

• Shared file access

• Evaluation

18

19

• Visibility:

make private log visible

to other applications

• Data layout:

turn write-optimized to

read-optimized format

(extent tree)

• Large, batched IO

• Coalesce log

Digest data in kernel

Write

NVM

Digest

NVM Shared areaPrivate operation log

Application

Strata:

LibFS

POSIX API

Strata:

KernelFS

Digest optimization:

Log coalescing
SQLite, Mail server: crash consistent update using write ahead logging

20

Create journal file

Write data to journal file

Write data to database file

Delete journal file

Digest eliminates unneeded work

...
...

Write data to database file

Remove

temporary durable writes

Private operation log

Application

Strata:

LibFS

Strata:

KernelFS

Throughput optimization:

Log coalescing saves IO while digesting

NVM Shared area

21

Application

Strata:

LibFS

Strata:

KernelFS

NVM Shared areaPrivate operation log

Digest and migrate data in kernel

Application

Strata:

LibFS

Strata:

KernelFS

NVM Shared areaPrivate operation log

22

SSD Shared area

HDD Shared area

• Low-cost capacity

• KernelFS migrates cold data

to lower layers

Digest and migrate data in kernel

NVM dataLogs

Digest
• Handle device IO properties

• Migrate 1 GB blocks

• Avoid SSD garbage

collection overhead

SSD garbage

collection overhead

23

0

250

500

750

1000

1250

0.1 0.25 0.5 0.6 0.7 0.8 0.9 1

S
S

D
 T

h
ro

u
g
h
p
u
t

(M
B

/s
)

SSD utilization

64 MB 128 MB 256 MB

512 MB 1024 MB

Random overwrite

Large, sequential writes avoid GC

5-6x difference

by hardware GC

Application

Strata:

LibFS

Strata:

KernelFS

NVM Shared areaPrivate operation log

24

SSD Shared area

HDD Shared area

• Low-cost capacity

• KernelFS migrates cold data

to lower layers

Digest and migrate data in kernel

NVM data

• Handle device IO properties

• Migrate 1 GB blocks

• Avoid SSD garbage

collection overheadSSD data

HDD data

Log

Higher layers always have up-to-date data

Read: hierarchical search

25

Application

Strata:

LibFS

Strata:

KernelFS

NVM Shared areaPrivate OP log

SSD Shared area

HDD Shared area

NVM data

SSD data

HDD data

Log data

21

3

4

Search order

Shared file access

26

• Leases grant access rights to applications [SOSP’89]

• Required for files and directories

• Function like lock, but revocable

• Exclusive writer, shared readers

Application 1

LibFS

KernelFS

Application 2

LibFS

Request write lease

to file A

LWrite file A data

Request write lease to file A

Revoke the write lease

L

Write file A data

Data

Example: concurrent writes to the same file A

OP log 1 OP log 2 Shared area

Leases serialize concurrent updates

Outline

• LibFS: Log operations to NVM at user-level

• Fast user-level access

• In-order, synchronous IO

• KernelFS: Digest and migrate data in kernel

• Asynchronous digest

• Transparent data migration

• Shared file access

• Evaluation

27

Experimental setup

• 2x Intel Xeon E5-2640 CPU, 64 GB DRAM

• 400 GB NVMe SSD, 1 TB HDD

• Ubuntu 16.04 LTS, Linux kernel 4.8.12

• Emulated NVM

• Use 40 GB of DRAM

• Performance model [Y. Zhang et al. MSST 2015]

• Throttle latency & throughput in software

28

Evaluation questions

29

• Latency:

• Does Strata efficiently support small, random writes?

• Does asynchronous digest have an impact on latency?

• Throughput:

• Strata writes data twice (logging and digesting).

Can Strata sustain high throughput?

• How well does Strata perform

when managing data across storage layers?

Related work

30

• NVM file systems

PMFS[EuroSys 14]: In-place update file system

• NOVA[FAST 16]: log-structured file system

• EXT4-DAX: NVM support for EXT4

• SSD file system

• F2FS[FAST 15]: log-structured file system

Microbenchmark:

write latency

32

• Strata logs to NVM

• Compare to NVM kernel file
systems:
PMFS, NOVA, EXT4-DAX

• Strata, NOVA

• In-order, synchronous IO

• Atomic write

• PMFS, EXT4-DAX

• No atomic write 0

2

4

6

8

10

128 B 1 KB 4 KB 16 KB

IO size

Strata PMFS

NOVA EXT4-DAX

L
a

te
n

c
y
 (u

s
)

17 21 23 29

Avg.: 26% better

Tail : 43% better

Latency: LevelDB

0

10

20

30

Write sync. Write rand. Read rand.

Strata PMFS

NOVA EXT4-DAX
35.2 49.2 37.7

34

25% better

Tied
L
a

te
n

c
y
 (u

s
)

• LevelDB (NVM)

• Key size: 16 B

• Value size: 1 KB

• 300,000 objects

• Workload causes
asynchronous digests

• Fast user-level logging

• Random write

• 25% better than PMFS

• Random read

• Tied with PMFSIO latency not impacted by asynchronous digest

Evaluation questions

35

• Latency:

• Does Strata efficiently support small, random writes?

• Does asynchronous digest have an impact on latency?

• Throughput:

• Strata writes data twice (logging and digesting).

Can Strata sustain high throughput?

• How well does Strata perform

when managing data across storage layers?

Throughput: Varmail

36

Mail server workload from Filebench

• Using only NVM

• 10000 files

• Read/Write ratio is 1:1

• Write-ahead logging

Log coalescing eliminates 86% of log entries, saving 14 GB of IO

0K 100K 200K 300K 400K

Strata

PMFS

NOVA

EXT4-DAX

Throughput (op/s)

29% better

Create journal file

Write data to journal

Write data to database

file

Delete journal file

Digest eliminates unneeded work

Write data to database file

Removes

temporary durable writes

KernelFS

Application

LibFS

Log coalescing

No kernel file system has both low latency and high throughput:

• PMFS: better latency

• NOVA: better throughput

Strata achieves both low latency and high throughput

Throughput: data migration

37

File server workload from Filebench

• Working set starts at NVM, grows to SSD, HDD

• Read/Write ratio is 1:2

User-level migration

• LRU: whole file granularity

• Treat each file system as a black-box

• NVM: NOVA, SSD: F2FS, HDD: EXT4

22% faster than

user-level migration

Cross layer optimization:

placing hot metadata

in faster layers

K 2K 4K 6K 8K 10K

Strata

User-level migration

Block-level caching

Avg. throughput (ops/s)

2x faster

Block-level caching

• Linux LVM cache, formatted with F2FS

Before concluding strata,

let’s re-evaluate design

42

Good system research should

have

43

Timely

Principled

General

problem

approach

solution

Timely problem?

45

• Does Strata address system issues for emerging

technologies?

• Does Strata address recent applications’ requirement?

Principled approach?

46

• Show me a sentence or a table to describe your system

Previous systems Strata

Performance Use complex kernel Kernel-bypass

Low-cost

capacity

Designed for a single

type of storage

Asynchronous

digest Transparent data

migration

Simplicity
Complex crash

consistency
In-order, synchronous IO

General solution?

47

• Is Strata a general purpose file system?

• Does Strata work with only NVM?

• Does Strata work with only SSD?

Conclusion

Source code is available at
https://github.com/ut-osa/strata
https://github.com/Dahca/strata (active)

48

Server applications need fast, small random IO on vast datasets

with intuitive crash consistency

Strata, a cross media file system, addresses these concerns

Performance: low latency, high throughput

• Novel split of LibFS, KernelFS

• Fast user-level access

Low-cost capacity: leverage NVM, SSD & HDD

• Asynchronous digest

• Transparent data migration with large, sequential IO

Simplicity: intuitive crash consistency model

• In-order, synchronous IO

https://github.com/ut-osa/strata
https://github.com/Dahca/strata

