
Concurrency

Jin-Soo Kim
(jinsoo.kim@snu.ac.kr)

Systems Software &
Architecture Lab.

Seoul National University

Spring 2019

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 2

▪ Processes

▪ Threads

▪ Events

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 3

int main (int argc, char *argv[])
{

. . .
listenfd = socket(AF_INET, SOCK_STREAM, 0);
bind(listenfd, (struct sockaddr *) &saddr, sizeof(saddr));
listen(listenfd, 5);
. . .

while (1) {
connfd = accept (listenfd, (struct sockaddr *)&caddr,

&caddrlen));
while ((n = read(connfd, buf, MAXLINE)) > 0) {

printf (“got %d bytes from client.\n”, n);
write(connfd, buf, n);

}
close(connfd);

}
}

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 4

int main (int argc, char *argv[])
{

. . .
signal (SIGCHLD, handler);

while (1) {
connfd = accept (listenfd, (struct sockaddr *)&caddr,

&caddrlen));
if (fork() == 0) {

close(listenfd);
while ((n = read(connfd, buf, MAXLINE)) > 0) {

printf (“got %d bytes from client.\n”, n);
write(connfd, buf, n);

}
close(connfd);
exit(0);

}
close(connfd);

}
}

void handler(int sig) {
pid_t pid;
int stat;
while ((pid = waitpid(-1, &stat,

WNOHANG)) > 0);
return;

}

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 5

int main (int argc, char *argv[])
{

int *connfdp;
pthread_t tid;
. . .

while (1) {
connfdp = (int *)

malloc(sizeof(int));
*connfdp = accept (listenfd,

(struct sockaddr *)&caddr,
&caddrlen));

pthread_create(&tid, NULL,
thread_main, connfdp);

}
}

void *thread_main(void *arg)
{
int n;
char buf[MAXLINE];

int connfd = *((int *)arg);
pthread_detach(pthread_self());
free(arg);

while((n = read(connfd, buf,
MAXLINE)) > 0)

write(connfd, buf, n);

close(connfd);
return NULL;

}

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 6

typedef struct {
int maxfd; // largest descriptor in read_set
int nready; // number of ready desc. from select
fd_set read_set; // set of all active descriptors
fd_set ready_set; // subset of desc. ready for reading

} pool;

int main (int argc, char *argv[])
{

int listenfd, connfd, val;
pool p;

...
listenfd = ... // socket(), bind(), listen()

// initialize pool
p.maxfd = listenfd;
FD_ZERO(&p.read_set);
FD_SET(listenfd, &p.read_set);

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 7

while (1) {
p.ready_set = p.read_set;
p.nready = select(p.maxfd+1, &p.ready_set, NULL, NULL, NULL);

if (FD_ISSET(listenfd, &p.ready_set)) {
connfd = accept (listenfd, (struct sockaddr *)&caddr,

&caddrlen));
FD_SET(connfd, &p.read_set);
if (connfd > p.maxfd) p.maxfd = connfd;
p.nready--;

}
check_clients (listenfd, &p);

}

}

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 8

void check_clients (int listenfd, pool *p) {
int s, n;
char buf[MAXLINE];
for (s = 0; s < p->maxfd+1 && p->nready > 0; s++) {

if (s == listenfd) continue;
if (FD_ISSET(s, &p->read_set) && FD_ISSET(s, &p->ready_set)) {

p->nready--;
if ((n = read(s, buf, MAXLINE)) > 0)

write(s, buf, n);
if (n == 0) { // EOF

close(s);
FD_CLR(s, &p->read_set);
if (s == p->maxfd) {

p->maxfd--;
while (!FD_ISSET(p->maxfd, &p->read_set)) p->maxfd--;

}
}

}
}

}

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 9

▪ int select (int nfds, fd_set *readfds, fd_set *writefds, fd_set *exceptfds, struct timeval *timeout)

• O(n) operations

• fdsets (e.g. readfds, etc.) are destroyed on return, must be rebuilt for next call

• More portable

▪ int poll (struct pollfd *fds, nfds_t nfds, const struct timespec *tmo_p, const sigset_t *sigmask)

• More efficient for large-valued or sparse file descriptors

• The same array can be used for next call

▪ int epoll_wait (int epfd, struct epoll_event *events, int maxevents, int timeout)

• epoll_create(), epoll_ctl(), and wait for events using epoll_wait()

• O(1) operations: epoll_wait() returns only the objects with ready file descriptors

• Linux-specific

Why Threads Are A Bad Idea?

(for most purposes)
(John Ousterhout, A talk @ USENIX Technical Conference, 1996)

Some of slides are borrowed from the authors’ presentation.

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 11

▪ Threads

• Grew up in OS world (processes)

• Evolved into user-level tool

• Proposed as solution for a variety of problems

• Every programmer should be a threads programmer?

▪ Problem: threads are very hard to program

▪ Alternative: events

▪ Claims

• For most purposes proposed for threads, events are better

• Threads should be used only when true CPU concurrency is needed

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 12

▪ General-purpose solution for managing concurrency

▪ Multiple independent execution streams

▪ Shared state

▪ Preemptive scheduling

▪ Synchronization (e.g. locks, conditions)

Shared state
(memory, files, etc.)

Threads

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 13

▪ Operating systems:

• One kernel thread for each user process

▪ Scientific applications:

• One thread per CPU (solve problems more quickly)

▪ Distributed systems:

• Process requests concurrently (overlap I/Os)

▪ GUIs

• Threads correspond to user actions; can service display during long-running

computations

• Multimedia, animations, …

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 14

▪ Too hard for most programmers to use

▪ Even for experts, development is painful

casual wizardsall programmers

Visual Basic programmers
C programmers

C++ programmers

Threads programmers

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 15

▪ Synchronization

• Must coordinate access to shared data with locks

• Forget a lock? Corrupted data

▪ Deadlock

• Circular dependencies among locks

• Each process waits for some other process: system hangs

lock A lock Bthread 1 thread 2

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 16

▪ Hard to debug

• Data dependencies, timing dependencies

▪ Threads break abstractions

• Can’t design modules independently

▪ Callbacks don’t work with locks

Module A

Module B

T1 T2

sleep wakeup

deadlock!

Module A

Module B

T1

T2

deadlock!

callbacks

calls

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 17

▪ Achieve good performance is hard

• Simple locking (e.g. monitors) yields low concurrency

• Fine-grain locking increases complexity, reduces performance in normal case

• OSes limit performance (scheduling, context switching)

▪ Threads not well supported

• Hard to port threaded code (PCs? Macs?)

• Standard libraries not thread-safe

• Kernel-calls, window systems not multi-threaded

• Few debugging tools (LockLint, debuggers?)

▪ Often don’t’ want concurrency anyway

• e.g. Window events

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 18

▪ One execution stream: no CPU concurrency

▪ Register interest in events (callbacks)

▪ Event loop waits for events, invokes handlers

▪ No preemption of event handlers

▪ Handlers generally short-lived
Event
Loop

Event Handlers

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 19

▪ Mostly GUIs

• One handler for each event (press button, invoke menu entry, etc.)

• Handler implements behavior (undo, delete file, etc.)

▪ Distributed systems

• One handler for each source of input (socket, etc.)

• Handler processes incoming request, sends response

• Event-driven I/O for I/O overlap

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 20

▪ Long-running handlers make application non-responsive

• Fork off subprocesses for long-running things (e.g. multimedia), use events to find

out when done

• Break up handlers (e.g. event-driven I/O)

• Periodically call event loop in handler (reentrancy adds complexity)

▪ Can’t maintain local state across events (handler must return)

▪ No CPU concurrency (not suitable for scientific apps)

▪ Event-driven I/O not always well supported (e.g. poor write buffering)

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 21

▪ Events avoid concurrency as much as possible, threads embrace

• Easy to get started with events: no concurrency, no preemption, no synchronization,

no deadlock

• Use complicated techniques only for unusual cases

• With threads, even the simplest application faces the full complexity

▪ Debugging easier with events

• Timing dependencies only related to events, not to internal scheduling

• Problems easier to track down: slow response to button vs. corrupted memory

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 22

▪ Events faster than threads on single CPU

• No locking overheads

• No context switching

▪ Events more portable than threads

▪ Threads provide true concurrency

• Can have long-running stateful handlers without freezes

• Scalable performance on multiple GPUs

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 23

▪ NO: important for high-end serves (e.g. databases)

▪ But, avoid threads whenever possible

• Use events, not threads, for GUIs, distributed systems,

low-end servers

• Only use threads where true CPU concurrency is needed

• Where threads needed, isolate usage in threaded

application kernel: keep most of code single-threaded

Threaded Kernel

Event-Driven Handlers

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 24

▪ Concurrency is fundamentally hard; avoid whenever possible

▪ Threads more powerful than events, but power is rarely needed

▪ Threads much harder to program than events; for experts only

▪ Use events as primary development tool (both GUIs and distributed

systems)

▪ Use threads only for performance-critical kernels

Why Events Are A Bad Idea?

(for high-concurrent servers)
(R. von Behren et al., HotOS, 2003)

Some of slides are borrowed from the authors’ presentation.

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 26

▪ Four primary arguments for events

• Inexpensive synchronization due to cooperative multitasking

• Lower overhead for managing state (no stacks)

• Better scheduling and locality, based on application-level information

• More flexible control flow (not just call/return)

▪ Claim:

• The right paradigm for highly concurrent applications is a thread package with

better compiler support

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 27

▪ Criticism: Many attempts to use threads for high concurrency have not

performed well

▪ This is due to poor thread implementations

• The presence of O(n) operations in scheduling, etc.

• Relatively high context switch overhead (preemption, kernel crossings)

▪ They are not intrinsic properties

of threads

• SEDA threaded web server benchmark

with modified GNU Pth user-level threads

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 28

▪ Criticism: Threads have restrictive control flow

▪ Complicated control flow patterns are rare in practice

• Three simple categories: call/return, parallel calls, pipelines

• All of these patterns can be expressed more naturally with threads

▪ Complex patterns

• Hard to understand and error-prone

• Lead subtle races

▪ Dynamic fan-in and fan-out

• Multicast or publish/subscribe applications

• Less graceful with threads

• Not used in high-concurrency servers

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 29

▪ Criticism: Thread synchronization mechanisms are too heavyweight

▪ Synchronization in event systems comes for free

• Mainly due to cooperative multitasking, not events themselves

▪ Cooperative thread systems can have the same benefits

▪ In either cases, free only on uniprocessors

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 30

▪ Criticism: Thread stacks are an ineffective way to

manage live state

▪ State management in threads

• Stack overflow?

• Wasting virtual address space on large stacks

• Automatic state management via call stack allow

programmers to be wasteful

▪ Can be solved:

• Dynamic stack growth

• Minimizing live state

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 31

▪ Criticism: The virtual processor model provided by threads forces the

runtime system to be too generic and prevents it from making optimal

scheduling decisions

▪ Scheduling in event systems

• Event systems are capable of scheduling event deliveries at application level

• Events allow better code locality by running several of the same kind of event in a

raw

▪ The same scheduling tricks can be applied to cooperative scheduled

threads

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 32

▪ Dynamic stack growth

• Compiler analysis determines the amount of stack space needed

▪ Live state management

• Compilers purge unnecessary state from the stack before making function calls

▪ Synchronization

• Compilers can warn the programmer about data races

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 33

▪ User-level threads package

• Subset of pthreads

• Intercept blocking system calls

• No O(n) operations

• Support > 100K threads

• 5000 lines of C code

▪ Simple web server: Knot

• 700 lines of C code

▪ Similar performance

• Linear increase, then steady

• Drop-off due to poll() overhead

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 34

▪ Threads are actually a more appropriate abstraction for high-

concurrency servers

• The concurrency in modern servers results from concurrent requests that are

largely independent

• The code that handles each request usually sequential

▪ Small improvements to compilers and thread runtime system can

eliminate the historical reasons to use events

