
Architecture and Code Optimization (ARC) Laboratory @ SNU

Biscuit: A Framework for Near-

Data Processing of Big Data

Workloads
Boncheol Gu et al.

2016 ACM/IEEE 43rd Annual International Symposium on Computer Architecture (ISCA)

Jun Heo / Jonghyun Bae (ARC)
(j.heo@snu.ac.kr / jonghbae@snu.ac.kr)

June 11th, 2019

Architecture and Code Optimization (ARC) Laboratory @ SNU

Contents

• Background

• Biscuit

• Evaluation

• Related work

• Conclusion

2

Architecture and Code Optimization (ARC) Laboratory @ SNU

Background: Data-intensive Applications

• Data communication between storage and CPU is enlarged

− e.g., PageRank on Hadoop MapReduce1) (24.6% by sync I/O, 20.3% by async

I/O)

3

// Function call for reading data

for (Text value : values) {

String content = value.toString();

String[] split = content.split("\\t");

double pageRank = Double.parseDouble(split[0]);

int totalLinks = Integer.parseInt(split[1]);

sumPageRanks += (pageRank / totalLinks);

}

double newRank = PageRank.DAMPING * sumPageRanks +

(1 - PageRank.DAMPING);

// Function call for writing result ranks

1) Daniele Pantaleone, Hadoop PageRank, “https://github.com/danielepantaleone/hadoop-pagerank”

Architecture and Code Optimization (ARC) Laboratory @ SNU

Background: What is Near-Data Processing (NDP)?

• Avoiding the need for costly chip-to-chip transfers, thus yielding

massive parallel, high-performance, energy-efficient processing1)

• Various form of near-data processing system

− Processing-in-memory (PIM), in-storage processing (ISP), FPGA-accelerated

SSD processing, ...

4

Storage Data
Host interface /

Network / ...
PU Storage Data PU

Processing

Result

Traditional data processing Near-data processing

1) Rajeev Balasubramonian and Boris Grot, Near-data Processing, IEEE Micro, 2016

Architecture and Code Optimization (ARC) Laboratory @ SNU

Background: Key Ingredients for NDP

• Ability to run user-written code on a device

• Efficient communication between host and storage-side tasks

• Efficient resource utilization in runtime

• Intuitive, high-level programming

• Safety

5

Architecture and Code Optimization (ARC) Laboratory @ SNU

Biscuit: System Overview

6

Architecture and Code Optimization (ARC) Laboratory @ SNU

Biscuit: Programming Model

Computation model

• Specifying computation using its

input and output data

• Libslet to define SSD-side tasks

and perform file I/O

7

Architecture and Code Optimization (ARC) Laboratory @ SNU

Biscuit: Programming Model

Computation model

• Specifying computation using its

input and output data

• Libslet to define SSD-side tasks

and perform file I/O

Coordination model

• Creating and managing tasks

• Establishing producer/consumer

relationship

• Libsisc to invoke and coordinate

execution of SSD-side tasks

8

Architecture and Code Optimization (ARC) Laboratory @ SNU

Biscuit: SSDlet

• A simple C++ program written with Biscuit APIs

• A unit of execution independently scheduled, represented by the

SSDlet class

9

class UserTask

: public SSDLet <IN_TYPE<int32_t>,

OUT_TYPE<int32_t>,

ARG_TYPE<File>> {

public:

void run() override {

auto in = getInputPort<0>();

auto out = getOutputPort<0>();

auto& file = getArgument<0>();

FileStream fs(std::move(file));

// do some computation

}}

Architecture and Code Optimization (ARC) Laboratory @ SNU

• Wordcount

− Count the frequency of each word in a given input file

Biscuit: Wordcount Example (1)

10

- take a file

- pass tokenized words

to Shuffler

- specify the target device

- load module on SSD

- create app instance &

proxy SSDLet instances

- establish connections

Host-side Task

int main (int argc, char* *argv[]) {

SSD ssd("/dev/nvme0n1");

auto mid = ssd.loadModule(...);

...

SSDLet mapper1(...);

...

wc.connect(mapper1.out(0), shuffler.in(0));

...

wc.start();

wc.wait();

ssd.unloadModule(mid);

return 0;

}

SSD-side Task

class Mapper: public SSDLet …

public:

void run () {

auto& file = getArgument<0>();

…

while (1) {

…

line.tokenize();

…

while (...) {

if (!output.put(std::string(word), 1)) return;

}}}};

(1) Write the codes

(2) X86 compile (3) ARM cross-compile

(4) Copy the module

into /var/isc/slets

(/dev/nvme0n1)

(5) Run the host

program

Architecture and Code Optimization (ARC) Laboratory @ SNU

• SSDLet

− Mapper: tokenization

− Shuffler: data partitioning and transformation, merge

− Reducer: summary

Biscuit: Wordcount Example (2)

11

SSDlet

Input

port

Output

port

Architecture and Code Optimization (ARC) Laboratory @ SNU

• Multithreading support - Cooperative Multithreading

− Low context switching overhead: explicit yield calls or blocking I/O function calls

− Multi-core support: a unit of multi-core scheduling (= application)

• Efficient data communication - I/O Ports as Bounded Queues

− Sending/receiving data = enqueue/dequeue operation

− Channel manager

• Dynamic module loading

− Function table: a collection of functions to perform task

− Separate address space for each SSDlet instance

• Dynamic memory allocation

− System memory allocator, user memory allocator

Biscuit: Implementation

12

Architecture and Code Optimization (ARC) Laboratory @ SNU

Evaluation: Methodology

• Hardware setup

• Basic performance results

− Data read latency: 18% shorter latency (biscuit < conv)

− Data read bandwidth: 1 GB/s larger bandwidth (biscuit >> conv)

• Application level workloads

− Pointer chasing, string search, DB scan/filtering, TPC-H (on MariaDB)

13

System Dell PowerEdge R720 server

CPU 2 Intel Xeon(R) CPU E5-2640

(12 threads/socket) @ 2.50 GHz

Memory 64 GB DRAM

Architecture and Code Optimization (ARC) Laboratory @ SNU

Evaluation: Application-level

• DB scan/filtering

− Simple (Q1) / complex (Q2) WHERE clause (filter condition)

− Biscuit achieves speed-ups of about 11x (Q1) and 10x (Q2)

• TPC-H queries

− The figure shows speed-ups correlated with the I/O reduction ratios shown together

− Biscuit reduces the number of intermediate row sets that must be read from the SSD

14

Architecture and Code Optimization (ARC) Laboratory @ SNU

Related Work

• 2B-SSD1)

− Byte- and block-addressable SSD

− Achieves DRAM-like write latency on SSD

• Summarizer2)

− Offload a data intensive task to the SSD

processor (similar motivation as Biscuit)

− SQL filtering/scanning acceleration by task

queue/controller and user function stack

15

1) D. Bae et al., “2B-SSD: The Case for Dual, Byte- and Block-Addressable Solid-State Drives," 2018 ACM/IEEE 45th Annual

International Symposium on Computer Architecture (ISCA), 2018.

2) Gunjae Koo et al., “Summarizer: trading communication with computing near storage,” 50th Annual IEEE/ACM

International Symposium on Microarchitecture (MICRO), 2017.

Architecture and Code Optimization (ARC) Laboratory @ SNU

Related Work

• SmartSSD1)

− Xilinx-based SSD: high-performance

accelerated computing closer to the

data

• GraFBoost2)

− Flash-based hardware acceleration for

multi-terabyte graphs

− Sort-reduce method of vertex updates

16

1) Samsung Tech Day 2018, “https://techday.samsungatfirst.com.”

2) Sang-Woo Jun et al., “GraFBoost: Using Accelerated Flash Storage for External Graph Analytics,” 2018 ACM/IEEE 45th

Annual International Symposium on Computer Architecture (ISCA), 2018.

Architecture and Code Optimization (ARC) Laboratory @ SNU

Conclusion

• Ability to run user-written code on a device

− Supporting C++11 features and standard libraries

• Efficient communication between host and storage-side tasks

− I/O ports as bounded queues

• Efficient resource utilization in runtime

− Hardware pattern matcher and lightweight multithreading

• Intuitive, high-level programming

− SSDlet based on flow-based programming model

• Safety

− Biscuit prohibits SSDlets from directly using low-level, logical block addresses

17

