
잘따라가겠조 (Jiwoo Bang, Yejoon Sohn)
Distributed Computing Systems Laboratory

Department of Computer Science and Engineering
Seoul National University, Korea

5/29/2019

Dynamo : 
Amazon's Highly Available 

Key-value Store



Index
▪ Motivation
▪ Background
▪ Design Consideration
▪ System Architecture

▪ Partitioning algorithm
▪ Data versioning
▪ Hinted handoff
▪ Replica synchronization
▪ Membership and Failure detection

▪ Implementation
▪ Evaluations
▪ Discussion



Motivation
▪ Amazon's platform

▪ Even the slightest outage has significant financial 
consequences and impacts customer trust

▪ The platform is implemented on top of an infrastructure of 
tens of thousands of servers and network components 
located in many datacenters around the world

▪ Persistent state is managed in the face of these failures -
drives the reliability and scalability of the software 
systems

▪ Dynamo
▪ Scalability
▪ Simple data model (name, value)
▪ Key-value store (big hashed table)
▪ Highly available (sacrifice consistency)
▪ Guarantee Service Level Agreements (SLA)



Background

▪ Query model
▪ Simple read and write operations to a data item that is 

uniquely identified by a key
▪ Most of Amazon’s services can work with this simple 

query model and do not need any relational schema
▪ targeted applications - store objects that are relatively 

small (usually less than 1 MB)



Background

▪ ACID properties
▪ Experience at Amazon has shown that data stores that 

provide ACID guarantees tend to have poor availability
▪ Dynamo targets applications that operate with weaker 

consistency (the “C” in ACID) if this results in high 
availability.

▪ Efficiency
▪ latency requirements which are in general measured at 

the 99.9th percentile of the distribution
▪ Average performance is not enough



Background

▪ Service Level Agreements (SLA)
▪ Application can deliver 

its functionality in bounded time
▪ Every dependency in the platform 

needs to deliver its functionality 
with even tighter bounds

▪ Service guaranteeing that it will 
provide a response within 300ms 
for 99.9% of its requests for a 
peak client load of 500 requests 
per second



Design Consideration
▪ Sacrifice strong consistency for availability
▪ Conflict resolution 

▪ executed during read instead of write : always writeable
▪ Incremental scalability
▪ Symmetry

▪ Every node in Dynamo should have the same set of 
responsibilities as its peers

▪ Decentralization
▪ In the past, centralized control has resulted in outages 

and the goal is to avoid it as much as possible
▪ Heterogeneity

▪ This is essential in adding new nodes with higher 
capacity without having to upgrade all hosts at once



System Architecture

Problem Technique Advantage

Partitioning Consistent Hashing Incremental Scalability

High Availability for writes Vector clocks with reconciliation 
during reads

Version size is decoupled from 
update rates.

Handling temporary failures Sloppy Quorum and hinted 
handoff

Provides high availability and 
durability guarantee when some 
of the replicas are not available.

Recovering from permanent 
failures Anti-entropy using Merkle trees Synchronizes divergent replicas 

in the background.

Membership and failure 
detection

Gossip-based membership 
protocol and failure detection.

Preserves symmetry and avoids 
having a centralized registry for 
storing membership and node 

liveness information.



Partitioning Algorithm
▪ Consistent hashing

▪ The output range of hash function is treated as a fixed 
circular space or ring

▪ Replication
▪ An item can be stored in multiple consecutive nodes 

depending on the degree of replication N
▪ Preference list : the list of (distinct physical) nodes that is 

responsible for storing a particular key



Partitioning Algorithm
▪ Virtual nodes

▪ Each node can be responsible for more than on virtual 
nodes (multiple random positions, tokens)

▪ Advantages of using virtual nodes
▪ If a node becomes unavailable，the load handled by this 

node is evenly dispersed across the remaining available 
nodes

▪ When a node becomes available again, or a new node is 
added to the system, the newly available node accepts a 
roughly equivalent amount of load from some of the other 
available nodes

▪ The number of virtual nodes that a node is responsible 
can be decided based on its capacity, accounting for 
heterogeneity in the physical infrastructure



Data Versioning
▪ Eventual consistency

▪ Updates are propagated to all replicas asynchronously
▪ Put(key, context, value) call

▪ may return to its caller before the update has been 
applied at all the replicas

▪ Get(key) call 
▪ May return many versions of the same object
▪ Distinct version sub-histories need to be reconciled.



Data Versioning
▪ Vector clock

▪ A vector clock is a list of 
(node, counter) pairs

▪ Every version of every object is 
associated with one vector clock

▪ Captures causality between 
different versions 

▪ Syntactic reconciliation: 
performed by system

▪ Semantic reconciliation: 
performed by client



Execution of get() and put() operation
▪ The user is able to issue commands with either of 

the following scenarios:
▪ A generic load balancer is invoked to direct the user's 

requests to the least utilization
▪ Use a partition-aware library to direct the request to one 

of the data owners directly
▪ The system requires two configurable values

▪ R: the number of available healthy nodes required for a 
successful reads

▪ W: the number of available healthy nodes required for a 
successful writes

R=3, W=3, N=5 R=4, W=2, N=5



Hinted Handoff
▪ Handling transient failures

▪ Sloppy quorum
▪ All read/write operations are performed on the first N 

healthy nodes from the preference list
▪ When A is unreachable, 'put' key will use D
▪ When D detects A is alive

▪ Send the replica to A
▪ Remove the replica

1

A
B

C

D
1’

1’

1’
1’



Replica Synchronization
▪ Handling permanent failure

▪ Anti-entropy for replica synchronization
▪ Use Merkle trees for fast inconsistency detection and 

minimum transfer of data
▪ Exchange root of Merkle tree to check if the key ranges 

are up-to-date

1 5 Data items: D2, D3, D4, D5

D2 D3 D4 D5

Hash Hash Hash Hash

Hash Hash

Hash



Membership and Failure Detection
▪ Membership

▪ A managed system
▪ Administrator explicitly adds and removes nodes

▪ Receiving node stores changes with time stamp
▪ Gossiping to propagate membership changes

▪ Eventual consistent view
▪ Failure detection

▪ Passive failure detection
▪ Use pings only for detection from failed to alive
▪ A detects B as failed if it doesn't respond to a message
▪ A periodically checks if B is alive again



Implementation
▪ Three main software components In Dynamo

▪ Membership & failure detection
▪ Local persistence engine

▪ Berkeley DB, MySQL
▪ Request coordination

▪ Read & Write
▪ Read repair

▪ Several services with different configurations
▪ Business logic specific reconciliation
▪ Timestamp based reconciliation
▪ High performance read engine

▪ Client can tune the value (N, R, W)
▪ Value of W and R impact object

▪ Availability, durability, consistency



Evaluation
▪ Balancing Performance Durability

▪ DynamoDB : Highly available data store (under 300ms)
▪ Using memory buffer



Evaluation

▪ Ensuring Uniform Load distribution



Evaluation

▪ Dynamo Partitioning
▪ Three Strategies



Evaluation
▪ Dynamo Partitioning

▪ Three Strategies



Evaluation
▪ Divergent Versions

▪ How & When
▪ System Failure
▪ Handling a large number of concurrent writers to a single 

data item
▪ Client-driven or Server-driven

▪ Dynamo node for a read request and a write request



Related Work
▪ Apache Cassandra

▪ Column-based data model
▪ Support more extensive data types

▪ Distributed Hash Table
▪ Tunable tradeoff

▪ Consistency vs. Latency
▪ No single point of Failure
▪ Linearly scalable
▪ Flexible partitioning, replica placement
▪ Highly availability (eventual consistency)



Conclusion
▪ Advantages

▪ Scalability
▪ Simple data model 
▪ Highly available 
▪ Guarantee Service Level Agreements 

▪ Limitations
▪ Low consistent data
▪ Simple query model compared to relational db
▪ Difficulty in handling hot keys


