Seoul National University

Ceph: A Scalable, High-Performance
Distributed File System (OSDI ‘06)

SIX(SEE, B E)
Architecture and Code optimization Lab.
Seoul National University

Seoul National University

Contents

Introduction
System Overview
Dynamically Distributed Metadata

Distributed Object Storage (RADOS)
Evaluation

Summary

Seoul National University

Motivation

m Problems on existing DFSs

= None of previous solutions has the combination of scalability,
adaptiveness and reliability

= Usually, metadata workload serves as the major obstacle

m HDDs being replaced with smart OSDs (object storage devices)

" Great potential to improve scalability by distributing the complexity
around data management to numerous nodes

= But, reluctance to fully exploit intelligence of the OSDs...
= Still relies on traditional file system principles.
» Little or no distribution of workload itself.

m Ceph is new distributed file system to resolve this issue

= Attempt to improve scalability along with adaptiveness and reliability by
decoupling data and metadata

Seoul National University

System Overview

Seoul National University

System Overview

m 3 main components
= OSD cluster, MDS cluster and Clients.

m Primary goals
= Scalability, Performance and Reliability

Clients Metadata Cluster
s - . Metadata operations
O @D D =D <—
Y P U < Metadata
i ®
L_Is | [libfuse|

Object Storage Cluster

]] :
L J 1y = .

| vis | fuse | E | _client I
Linux kernel | E myproc | |
_______________________ .

Seoul National University

System Overview

m Decoupled data and metadata
= (Calculate location rather than looking it up.

m Dynamic distributed metadata management
= Dynamic Subtree Partitioning.
= Efficiently utilize MDS cluster under any workload.

m Reliable automatic distributed object storage

= OSD cluster is responsible for data migration, replication and
failure detection/recovery.

= MDS doesn’t care about OSD’s state.

Seoul National University

Decoupled Data and Metadata

m Calculate file’s location rather than looking it up.
= Metadata storage has minimal metadata of file(80 bytes)

= File’s location can be calculated from minimal metadata using
CRUSH (Controlled Replication Under Scalable Hashing).

Filename

4

£ £ Metadata Location

CRUSH

MDS cluster

Seoul National University

Decoupled Data and Metadata

m Example read/write operation.

OSD Client MDS

Returns Metadata Traverse FS
(+Capability, ...)

EciEE

Calculate location
using CRUSH
Read/write request

\

Return result

Seoul National University

Synchronization

m POSIX semantics
= Reads have to reflect any previously written data.
= Write is atomic.
= However, this can be a performance killer for HPC workloads.
= Read-write sharing a single large file

Seoul National University

Synchronization

m Relaxed coherence semantic
= Available with additional flag (O_LAZY) when opening a file.
= Application will manage their own consistency.
= Applications can explicitly synchronize with OSD using additional calls.
= lazyio propagate() flushes a given byte range to OSD.

= lazyio synchronize() will ensure that the effects of previous
propagations are reflected in any subsequent reads.

With O_LAZY flag

Client 1 open() Write() lazyio_sync();
Client 2 open() Read() Read() Read()
Get Get .
unchanged data changed data

* Not drawn to scale

10

Seoul National University

File system namespace operations

m Caching directory data from stat() for following
operations.
= Making common case fast.
= Example: readdir () followed by stat() ($>1s -1).
= Explicitly implemented as readdirplus() extension.

m However, caching stat() data longer may behave
incorrectly.
= Polling stat() may return inconsistent result in that case.

= stat() will stall all writes to specified file and returns current state.
Use cached data

Client stat() readdir() stat() stat() stat()
Stall Stall Stall Stall]
writes writes writes writes

* Not drawn to scale 1"

Seoul National University

File system namespace operations

m Caching directory data from stat() for following
operations.

= Making common case fast.
= Example: readdir () followed by stat() ($>1s -1).

m However, caching stat() data longer may behave
incorrectly.

m statlite() can be employed if coherency is unnecessary.

Use cached data

Client stat() readdir() | | statlite() | | statlite() | | statlite()

MDS \

* Not drawn to scale

v

v

Stall

. Write Stalls are gone!
writes

12

Dynamically Distributed Metadata

13

Seoul National University

Dynamically Distributed Metadata

m Light metadata (80 bytes)

= Directory entries and inodes., per
= Allocation metadata is not necessary.

m Simplified metadata workload
® QObjects are distributed to OSDs using CRUSH and inode number.
= Object location is calculated rather than looked up.
= This will be covered in OSD section.

14

Seoul National University

Metadata Storage

m Stored in OSD (diskless MDS) or Local disk.
m Per-MDS journaling

= Large, bounded and lazily flushed journal
= Efficiently reduces disk writes by lazily flushing.

= Ensures sequential write to maximize disk bandwidth.

m However, Recovery scheme is not implemented.
= (At least at 2006)

15

Seoul National University

Dynamic Subtree Partitioning

m Issues on previous works

= Hash function effectively distributes workload with the cost of
locality.

/path/to/dir/filel

/path/to/dir/file2

/path/to/dir/file3

/path/to/dir/file4

MDS cluster

16

Seoul National University

Dynamic Subtree Partitioning

m Issues on previous works

= static subtree partitioning shows high locality. But it is hard to cope
with heavily skewed workload.

Root

ANANAN AAAA

\ J \)
Y Y

\ J \
Y

MDS 1 MDS 2 MDS 3 MDS 4 MDS 5 MDS 6

17

Seoul National University

Dynamic Subtree Partitioning

m Compare and Balance
= Each MDS tracks load of itself and others’.
= Compared periodically and evenly distributed across the cluster.

Root

/<

\‘\

A3
MDSO\ MDS 1 MDS 2 MDS 3 MDS 4
B

Busy directory hashed across many MDS's

Seoul National University

Traffic control for hot spots

m Heavily read directories’ metadata
(Example: Opening many files)
= Contents are replicated across the cluster.
= Load is distributed to other MDSs.

Clients Clients

Replication

IV/ZEEadiNN

MDS cluster MDS cluster

19

Seoul National University

Traffic control for hot spots

m Heavily written directories’ metadata

(Example: Creating many files)

= Contents are hashed by file name and distributed across the
cluster.

= Sacrifices locality, but better scalability.

Clients Clients
Hashing

\\‘ // * Hash function
MDS cluster \‘

MDS cluster

20

Distributed Object Storage
(Reliable Autonomic Distributed Object
Store)

21

Seoul National University

RADOS

m Distributed management

= (QObject replication, low-level allocation, cluster expansion, failure
detection, recovery and other management operations are done by
intelligent OSDs in a distributed manner

= Rejecting any central server results in high scalability

= Largely fueled by a data distribution function (CRUSH) which replaces
allocation map.

22

Data Distribution with CRUSH

m Load balancing is important!
" Load asymmetry leads to ineffective utilization of storage bandwidth

m Stochastic approach
= Distribute new data randomly
= Migrate a random sample of existing data to new devices
= Uniformly re-distribute data from removed devices

23

Data Distribution with CRUSH (cont’d)

m Distribution flow

(DFile striped into multiple objects
— Object ID = {file inode, stripe number}
— Simple combination

@Objects grouped into placement groups (PGs)
— PG ID = hash(Object id) & mask
— Simple hash function and an adjustable bit mask

@PGS assigned to an ordered list of OSDs

— 0OSDs = CRUSH(PG ID)
— Pseudo-random mapping function ‘CRUSH (Controlled Replication Under Scalable Hashing)’

File I I [: _—
ino. i

Dbjects [X 10 \ - \ ' I\. — (ino,ono) oid

W & hash(oid) & mask —=pgid @

CRUSH(pgid) —» (0sd1, 0sd2) g
2-way replication

OSDs
(grouped by
failure domain)

24

Data Distribution with CRUSH (cont’d)

m CRUSH Ordered
" Approximate a uniform probability distribution FEU— CRUSH == 9o

= Pseudo-random
= Deterministic

Cluster Placement

: Any system can calculate CRUSH function Map Rule

independently without consulting a central allocator
NO metadata server required

= Distribution controlled by cluster map & placement rules
— Cluster map

Hierarchical, weighted map of storage devices.
of storage devices, capability of each device, organization of devices ...
— Placement rules
Level of replication (2-way, 4-way ...)
Constraints on placement (separate replicas across different failure domains)
-> e.g) All replicas should be on different shelves

in which devices share same power supply.

25

Replication

m Primary-copy based replication
= First non-failed OSD in a list of OSDs is primary copy
" Primary copy forwards write to the replicas
= Client does not need to care about replicas
"= No bandwidth burden on the client due to replication

26

Seoul National University

Data Safety

m Data safety achieved by update process
= Send Ack to client once all replicas have received the update
= Send Commit once all replicas have committed update to disk
" (Clients buffer write until they get commit,
and replay in the case of failure

© client)Primary [JReplica [[]Replica
QO .
E * —p \Write
= h - W& Apply update
A Ack
) - " s Commit to disk
=T == ——+ Commit
e
-
- — ——

27

Seoul National University

Failure Detection

m Active failure detection
" Failures that make an OSD unreachable require active monitoring
= Each OSD monitors those peer OSDs with which it shares PGs
-> Distributed monitoring allows fast detection

= A small cluster of monitors centrally collects anomalies and maintain
synchronized cluster map

= A unresponsive OSD is initially marked down for a specific length of time,
and marked out later if quick recovery is not available

-> Distinction between ‘Down’ and ‘Out’ avoids hasty data replication

Down
Faliure - Primary'responsibility out
temporarily taken by - PG mapped to N
— - PG degraded (N-1 recovery - Data redistributed to
quick replicas) other OSDs
recovery - No data redistribution

28

Seoul National University

Recovery and Cluster Update

m Failure recovery driven by individual OSDs
= (OSDs maintain a version number for each object and a log for each PGs

= When OSD receives an updated cluster map, and a PG’s membership has
changed,
— for primary PGs, OSD collects current replicas’ PG versions to
determine correct PG contents
— for replicated PGs, OSD sends the primary its current PG version

version num

-

-
-
-
-
-
-

0sSD1 e —— >
0sD1 0SD1
Crashes Recovers
0SD2
version / log
update...

0OSD2 0OSD2 29

Seoul National University

m EBOFS (Extent and B-tree based Object File System)

= Existing general purpose local file system is not suitable
- Existing kernel interface limits RADOS’s ability to understand safe
commit timing
— Journaling accompanies big performance penalty
— POSIX interface fails to support atomic data & metadata update

= Each Ceph OSD manages its local object storage with EBOFS
— Fully integrated B-tree service
— Block allocation done in terms of extent (start, length)
— Free space sorted by size and location
— Aggressive copy-on-write

30

Seoul National University

Performance and Scalability Evaluation

31

Seoul National University

Data Performance (Throughput)

. 60 -

B Per-OSD throughput with 5 L] e S T i S
; . . <]
varying write sizes and S 40
. . E g]
replication. =3 301

.. . .] D o - ~—— no replication

Replication has minimal impact on 9 o] replcation

[1 —— e gX replication

OSD throughput. «

-4 16 64 256 1024 4096
Write Size (KB)

B Performance of EBOFS
compared to general-purpose
file systems.

Small writes suffer from coarse
locking, but it nearly saturates the

disk bandwidth for writes larger
than 32KB.

Per-OSD Throughput (MB/sec)

I
4096 16384

0 - T T T T T T T T
4 16 64 256 1024

/O Size (KB)

32

Seoul National University

Data Performance (Latency & Scalability)

B Write latency for varying write

sizes and replication

Retransmission overhead
dominates for large writes.

Per-OSD write throughput with
the increasing size of the
cluster and different
distribution schemes

Linear striping is good, but subject
to failure or cluster changes.
Better throughput for CRUSH/hash

with more PGs. (more uniform
distribution)

N
o
I

—
($)]
1

Write Lat_epcy (ms)
($)] o

o

no replication £
------ 2x replication S
——— 3x replication s
. A=k
« Sync write "

x sync lock, async write

Per—OSD Throughput
(MB/sec

4 -*----* hash (32k PGs)

T
256

| == crush (32k PGs)
+— crush (4k PGs)

-#---= hash (4k PGs)
| —*——*linear

T T
2 6 10 14 18 22 26

OSD Cluster Size

33

Seoul National University

Metadata Performance (Latency)

Fay
i

B Metadata update latency for .
an MDS with and without a é 31 L
local disk for varying replication g2 el
Using local disk lowers update % L skess
[atency. - - ——= |ocal disk
0 T T r .
0 1 2 3 4
Metadata Replication
B Metadata read latency during a
file system walk (readdir .
followed by stat) g st
readdir time reduces due to MDS fgj 100 1 " readdirple
cache, and readdirplus (relaxed s i
consistency) eliminates time for Lé EII
stat. 3 o

lmsn pdrmed fresh pdimed
10 filas ¢ dir 1 file / dir

34

Seoul National University

Metadata Performance (Scalability)

2000

g -t. ——8 maadirs

-:% 4000 .\‘m —:— —: :LT:;.:M

§ __ -_h'-..____'__- = = = =% gpansshsancude

E- Smn i [——— ~ s U - - [a]a slgt s g B a]

= | - - -,

B Per-MDS throughput with the £ 2004, Sy
increasing cluster size S qop0 * T__*_"‘_t_-—'—:l_:_.;-_-_.h,____w
Not perfect linear scaling, but no & o
o 0 16 32 48 64 80 o6 112 128

more than 5OA bEIOW. MDS Cluster Size (nodes)

Load imbalance increases with the

cluster size, which imposes limits 0 DS |
ofe - 4 /
on scalability. A ‘;E SoasMDss Y
= ; -/
§ 20- T /
o i r
T E R e
{J 1 —-.-____I 1 1
0 500 1000 1500 2000

Per-MDS throughput (ops/sec)

35

Seoul National University

Summary

36

Seoul National University

Summary

m Data - Metadata Separation
= CRUSH: enables independent object location calculation of client
= Usually, metadata workload serves as the major obstacle

m MDS optimization
= Load balancing by dynamic subtree partitioning / hot spot replication

m OSD optimization (RADOS)

= Distributed / autonomous allocation, replication, failure detection and
recovery

= EBOFS, optimal local file system for Ceph

Scalability , High-Performance, Reliability!

37

