
Seoul National University

1

Ceph: A Scalable, High-Performance
Distributed File System (OSDI ‘06)

한조(공정훈, 박연홍)

Architecture and Code optimization Lab.

Seoul National University

Seoul National University

2

Contents

 Introduction

 System Overview

 Dynamically Distributed Metadata

 Distributed Object Storage (RADOS)

 Evaluation

 Summary

Seoul National University

3

Motivation

⬛ Problems on existing DFSs
▪ None of previous solutions has the combination of scalability,

adaptiveness and reliability

▪ Usually, metadata workload serves as the major obstacle

⬛ HDDs being replaced with smart OSDs (object storage devices)
▪ Great potential to improve scalability by distributing the complexity

around data management to numerous nodes

▪ But, reluctance to fully exploit intelligence of the OSDs...

▪ Still relies on traditional file system principles.

▪ Little or no distribution of workload itself.

⬛ Ceph is new distributed file system to resolve this issue
▪ Attempt to improve scalability along with adaptiveness and reliability by

decoupling data and metadata

Seoul National University

4

System Overview

Seoul National University

5

System Overview

 3 main components
 OSD cluster, MDS cluster and Clients.

 Primary goals
 Scalability, Performance and Reliability

Seoul National University

6

System Overview

 Decoupled data and metadata
 Calculate location rather than looking it up.

 Dynamic distributed metadata management
 Dynamic Subtree Partitioning.

 Efficiently utilize MDS cluster under any workload.

 Reliable automatic distributed object storage
 OSD cluster is responsible for data migration, replication and

failure detection/recovery.

 MDS doesn’t care about OSD’s state.

Seoul National University

7

Decoupled Data and Metadata

 Calculate file’s location rather than looking it up.
 Metadata storage has minimal metadata of file(80 bytes)

 File’s location can be calculated from minimal metadata using
CRUSH (Controlled Replication Under Scalable Hashing).

Filename

CRUSH

LocationMetadata

File data

MDS cluster OSD cluster

Seoul National University

8

Decoupled Data and Metadata

Client MDSOSD

File open

Returns Metadata
(+Capability, …)

Traverse FS

Read/write request

Return result

Calculate location
using CRUSH

 Example read/write operation.

Seoul National University

9

Synchronization

 POSIX semantics
 Reads have to reflect any previously written data.

 Write is atomic.

 However, this can be a performance killer for HPC workloads.

 Read-write sharing a single large file

Seoul National University

10

Synchronization

 Relaxed coherence semantic
 Available with additional flag (O_LAZY) when opening a file.

 Application will manage their own consistency.

 Applications can explicitly synchronize with OSD using additional calls.

 lazyio_propagate() flushes a given byte range to OSD.

 lazyio_synchronize() will ensure that the effects of previous
propagations are reflected in any subsequent reads.

Write()

Read()

Client 1

Client 2 Read()

lazyio_sync();

Read()

Get
unchanged data

Get
changed data

open()

open()

With O_LAZY flag

* Not drawn to scale

Seoul National University

11

File system namespace operations

 Caching directory data from stat() for following
operations.
 Making common case fast.

 Example: readdir() followed by stat() ($>ls -l).

 Explicitly implemented as readdirplus() extension.

 However, caching stat() data longer may behave
incorrectly.
 Polling stat() may return inconsistent result in that case.

 stat() will stall all writes to specified file and returns current state.

readdir()Client stat()

Use cached data

MDS

Stall
writes

stat()

Stall
writes

stat()

Stall
writes

stat()

Stall
writes

* Not drawn to scale

Seoul National University

12

File system namespace operations

 Caching directory data from stat() for following
operations.
 Making common case fast.

 Example: readdir() followed by stat() ($>ls -l).

 However, caching stat() data longer may behave
incorrectly.

 statlite() can be employed if coherency is unnecessary.

readdir()Client stat()

Use cached data

MDS

Stall
writes

statlite() statlite() statlite()

Write Stalls are gone!* Not drawn to scale

Seoul National University

13

Dynamically Distributed Metadata

Seoul National University

14

Dynamically Distributed Metadata

 Light metadata (80 bytes)
 Directory entries and inodes., per

 Allocation metadata is not necessary.

 Simplified metadata workload
 Objects are distributed to OSDs using CRUSH and inode number.

 Object location is calculated rather than looked up.

 This will be covered in OSD section.

Seoul National University

15

Metadata Storage

 Stored in OSD (diskless MDS) or Local disk.

 Per-MDS journaling
 Large, bounded and lazily flushed journal

 Efficiently reduces disk writes by lazily flushing.

 Ensures sequential write to maximize disk bandwidth.

 However, Recovery scheme is not implemented.
 (At least at 2006)

Seoul National University

16

Dynamic Subtree Partitioning

 Issues on previous works
 Hash function effectively distributes workload with the cost of

locality.

/path/to/dir/file1

/path/to/dir/file2

/path/to/dir/file3

/path/to/dir/file4

MDS cluster

Seoul National University

17

Dynamic Subtree Partitioning

 Issues on previous works
 static subtree partitioning shows high locality. But it is hard to cope

with heavily skewed workload.

Root

MDS 1 MDS 2 MDS 3 MDS 4 MDS 5 MDS 6

Seoul National University

18

Dynamic Subtree Partitioning

 Compare and Balance
 Each MDS tracks load of itself and others’.

 Compared periodically and evenly distributed across the cluster.

Seoul National University

19

Traffic control for hot spots

 Heavily read directories’ metadata
(Example: Opening many files)

 Contents are replicated across the cluster.

 Load is distributed to other MDSs.

MDS cluster

Clients

MDS cluster

Clients

Replication

Seoul National University

20

Traffic control for hot spots

 Heavily written directories’ metadata
(Example: Creating many files)

 Contents are hashed by file name and distributed across the
cluster.

 Sacrifices locality, but better scalability.

MDS cluster

MDS cluster

Clients Clients

Hash function

Hashing

Seoul National University

21

Distributed Object Storage
(Reliable Autonomic Distributed Object

Store)

Seoul National University

22

RADOS

⬛ Distributed management
▪ Object replication, low-level allocation, cluster expansion, failure

detection, recovery and other management operations are done by
intelligent OSDs in a distributed manner

▪ Rejecting any central server results in high scalability

▪ Largely fueled by a data distribution function (CRUSH) which replaces
allocation map.

Seoul National University

23

Data Distribution with CRUSH

⬛ Load balancing is important!
▪ Load asymmetry leads to ineffective utilization of storage bandwidth

⬛ Stochastic approach
▪ Distribute new data randomly

▪ Migrate a random sample of existing data to new devices

▪ Uniformly re-distribute data from removed devices

Seoul National University

24

Data Distribution with CRUSH (cont’d)

⬛ Distribution flow
➀File striped into multiple objects

- Object ID = {file inode, stripe number}
- Simple combination

➁Objects grouped into placement groups (PGs)
- PG ID = hash(Object id) & mask
- Simple hash function and an adjustable bit mask

➂PGs assigned to an ordered list of OSDs
- OSDs = CRUSH(PG ID)
- Pseudo-random mapping function ‘CRUSH (Controlled Replication Under Scalable Hashing)’

➂

➁

➀

2-way replication

Seoul National University

25

Data Distribution with CRUSH (cont’d)

⬛ CRUSH
▪ Approximate a uniform probability distribution

▪ Pseudo-random

▪ Deterministic

: Any system can calculate CRUSH function

independently without consulting a central allocator

NO metadata server required

▪ Distribution controlled by cluster map & placement rules
- Cluster map

Hierarchical, weighted map of storage devices.

of storage devices, capability of each device, organization of devices ...

- Placement rules

Level of replication (2-way, 4-way …)

Constraints on placement (separate replicas across different failure domains)

-> e.g) All replicas should be on different shelves

in which devices share same power supply.

Seoul National University

26

Replication

⬛ Primary-copy based replication
▪ First non-failed OSD in a list of OSDs is primary copy

▪ Primary copy forwards write to the replicas

▪ Client does not need to care about replicas

▪ No bandwidth burden on the client due to replication

Seoul National University

27

Data Safety

⬛ Data safety achieved by update process
▪ Send Ack to client once all replicas have received the update

▪ Send Commit once all replicas have committed update to disk

▪ Clients buffer write until they get commit,

and replay in the case of failure

Seoul National University

28

Failure Detection

⬛ Active failure detection
▪ Failures that make an OSD unreachable require active monitoring

▪ Each OSD monitors those peer OSDs with which it shares PGs

-> Distributed monitoring allows fast detection

▪ A small cluster of monitors centrally collects anomalies and maintain
synchronized cluster map

▪ A unresponsive OSD is initially marked down for a specific length of time,
and marked out later if quick recovery is not available

-> Distinction between ‘Down’ and ‘Out’ avoids hasty data replication

Down

- Primary responsibility

temporarily taken by

the next OSD

- PG degraded (N-1

replicas)

- No data redistribution

Out

- PG mapped to N

OSDs again

- Data redistributed to

other OSDs

no quick
recovery

Faliure

quick
recovery

Seoul National University

29

Recovery and Cluster Update

⬛ Failure recovery driven by individual OSDs
▪ OSDs maintain a version number for each object and a log for each PGs

▪ When OSD receives an updated cluster map, and a PG’s membership has
changed,
- for primary PGs, OSD collects current replicas’ PG versions to

determine correct PG contents
- for replicated PGs, OSD sends the primary its current PG version

pgA

primary

pgA

replica

OSD1

OSD2

pgA

primary

OSD2

pgA

primary

pgA

replica

OSD1

OSD2

OSD1
Crashes

OSD1
Recovers

version / log
update...

version num
& log entries

Seoul National University

30

EBOFS

⬛ EBOFS (Extent and B-tree based Object File System)
▪ Existing general purpose local file system is not suitable

- Existing kernel interface limits RADOS’s ability to understand safe
commit timing

- Journaling accompanies big performance penalty
- POSIX interface fails to support atomic data & metadata update

▪ Each Ceph OSD manages its local object storage with EBOFS
- Fully integrated B-tree service
- Block allocation done in terms of extent (start, length)
- Free space sorted by size and location
- Aggressive copy-on-write

Seoul National University

31

Performance and Scalability Evaluation

Seoul National University

32

Data Performance (Throughput)

⬛ Per-OSD throughput with
varying write sizes and
replication.

Replication has minimal impact on
OSD throughput.

⬛ Performance of EBOFS
compared to general-purpose
file systems.

Small writes suffer from coarse
locking, but it nearly saturates the
disk bandwidth for writes larger
than 32KB.

Seoul National University

33

Data Performance (Latency & Scalability)

⬛ Write latency for varying write
sizes and replication

Retransmission overhead
dominates for large writes.

⬛ Per-OSD write throughput with
the increasing size of the
cluster and different
distribution schemes

Linear striping is good, but subject
to failure or cluster changes.

Better throughput for CRUSH/hash
with more PGs. (more uniform
distribution)

Seoul National University

34

Metadata Performance (Latency)

⬛ Metadata update latency for
an MDS with and without a
local disk for varying replication

Using local disk lowers update
latency.

⬛ Metadata read latency during a
file system walk (readdir
followed by stat)

readdir time reduces due to MDS
cache, and readdirplus (relaxed
consistency) eliminates time for
stat.

Seoul National University

35

Metadata Performance (Scalability)

⬛ Per-MDS throughput with the
increasing cluster size

Not perfect linear scaling, but no
more than 50% below.

Load imbalance increases with the
cluster size, which imposes limits
on scalability.

Seoul National University

36

Summary

Seoul National University

37

Summary

⬛ Data - Metadata Separation
▪ CRUSH: enables independent object location calculation of client

▪ Usually, metadata workload serves as the major obstacle

⬛ MDS optimization
▪ Load balancing by dynamic subtree partitioning / hot spot replication

⬛ OSD optimization (RADOS)
▪ Distributed / autonomous allocation, replication, failure detection and

recovery

▪ EBOFS, optimal local file system for Ceph

