Live Migration of Virtual Machines

Christopher Clark, Keir Fraser, Steven Hand, Jacob Gorm Hansen⁺, Eric Jul⁺, Christian Limpach, Ian Pratt, Andrew Warfield

NSDI 2005

Outline

- Introduction
- Related Work
- Design
- Writable Working Sets
- Implementation
 - Managed Migration
 - Self Migration
 - Dynamic Rate-Limiting
 - Some implementation issues
- Evaluation
- Future work
- Conclusion

Introduction [1/2]

- The research field of operating system virtualization is receiving much attention in data center and cluster computing
 - paravirtualization
- Migration of entire virtual machine
 - Original host are terminated after migration
 - Maintenance and repair of original host
 - In-memory state can be maintained consistently
 - No restart and reconnection
 - Migration concerns between users and operators is simplified

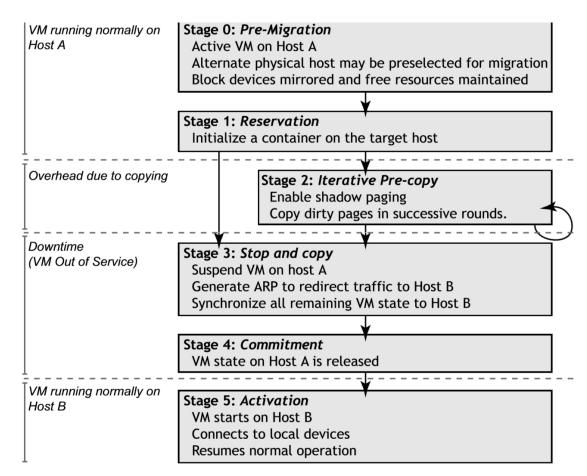
Introduction [2/2]

- Issues
 - Downtime and total migration time
 - Resource contention
 - CPU
 - Network bandwidth
- Approach
 - Pre-copy
 - Migration without stop
 - Stop-and-copy
 - Migration when the VM is not running

Related Work

- Collective project
 - Migration of an OS instance for mobility
 - Different physical hosts and different times
- Zap
 - Migration of process domains using partial OS virtualization
 - No live migration
- NomadBIOS
 - Pre-copy migration
 - No rate adaptation of the writable working set
- Process migration
 - Residual dependencies
- Sprite
- MOSIX

Design [1/3]

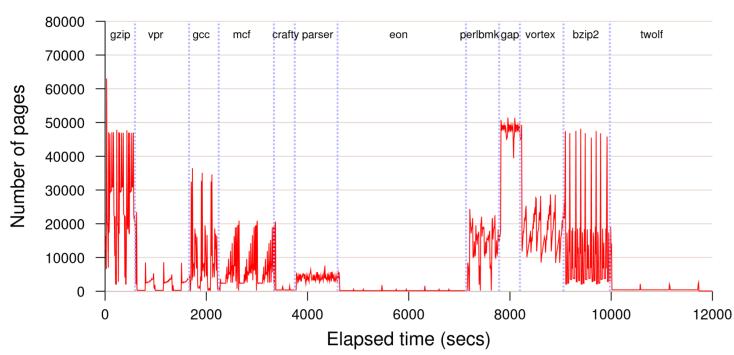

- Migrating Memory
 - Balance of downtime and total migration time
 - Downtime: time when service is not available
 - Total migration time: all time during migration
 - Bounded Iterative push phase
 - pre-copy
 - A short stop-and-copy phase
 - Writable working set (WWS)
 - Adjust the page ratio of pre-copy phase and stop-and-copy phase
 - WWS behavior
 - Service degradation can be prevented by adjusting network and CPU resources appropriately

Design [2/3]

- Network resources
 - Local area network
 - Advertise IP movement using unsolicited ARP reply
 - In some environments, the operating system will reply directly after recognizing the migration
- Local storage
 - Network-attached storage (NAS)
 - NAS allows all hosts to access storage
 - Local disk storage

Design [3/3]

- Migration timeline
 - OS migration from host A to host B



Writable Working Sets [1/2]

- Frequent modification of memory pages causes the overhead of page transfer
- Methods for determining the stop time for pre-copy approach is needed
 - No page modification
 - 1 pre-copy
 - Frequent page modifications
 - All pre-copy are vain
 - Stop and copy is required
- Writable Working Sets
 - Determine the page set for pre-copy approach and the page set for stopand-copy (WWS)

Writable Working Sets [2/2]

- Measuring Writable Working Sets
 - A serious of programs that run over a period of time
 - Page size: 4KB

Tracking the Writable Working Set of SPEC CINT2000

Managed Migration

- Performed by migration daemons running in the management VMs of the source and destination hosts
- Use shadow page table to track dirty pages in each push round
 - Xen inserts shadow page table under the guest OS
 - All PTEs are initially marked read-only
 - If the guest tries to modify a page, the resulting page fault is trapped by Xen
 - Xen checks the OS's original page table and forwards the appropriate write permission, marks the page as dirty in the bitmap
- At the beginning of next push round
 - The bitmap is copied to the control software, Xen's bitmap is cleared
 - The shadow page tables are destroyed and recreated, all write permissions are lost

Self Migration

- Implemented almost entirely within the migratee OS with only a small stub required on the destination machine
- No modifications are required either to Xen or to the management software running on the source machine

Difference	Managed Migration	Self Migration
Track WWS	Shadow page table + Bitmap	Bitmap + A spare bit in PTE
Stop-and- copy	Suspend OS (to obtain a consistent checkpoint)	2-stage stop-and-copy Ignore page updates in last transfer

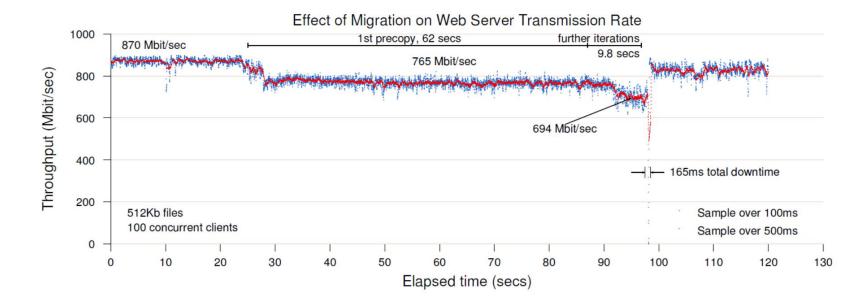
Dynamic Rate-Limiting

- Dynamically adapt the bandwidth limit during each pre-copying round
- The administrator selects a min and a max bandwidth limit
- The 1st pre-copy round transfers pages at the minimum bandwidth limit
- Each subsequent round
 - Dirtying rate + constant increment (50Mbits/sec)

• Dirtying rate = $\frac{the \# of pages dirtied in the previous round}{duration of the previous round}$

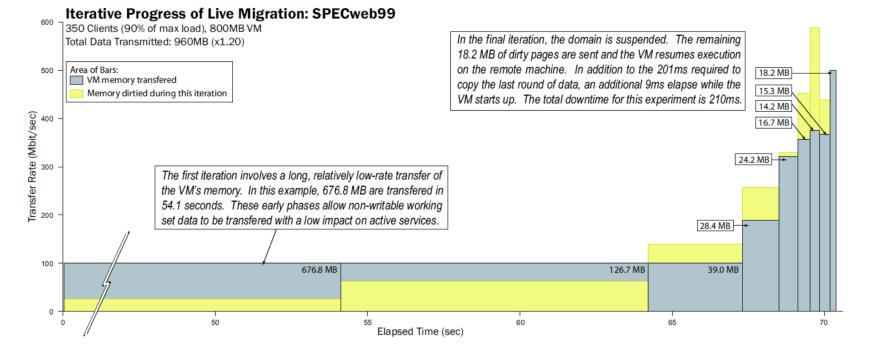
- Pre-copying terminated when
 - Calculated rate > max bandwidth
 - Less than 256KB remains to be transferred
- During the final stop-and-copy phase, transfers memory at the maximum allowable rate

Some Implementation Issues

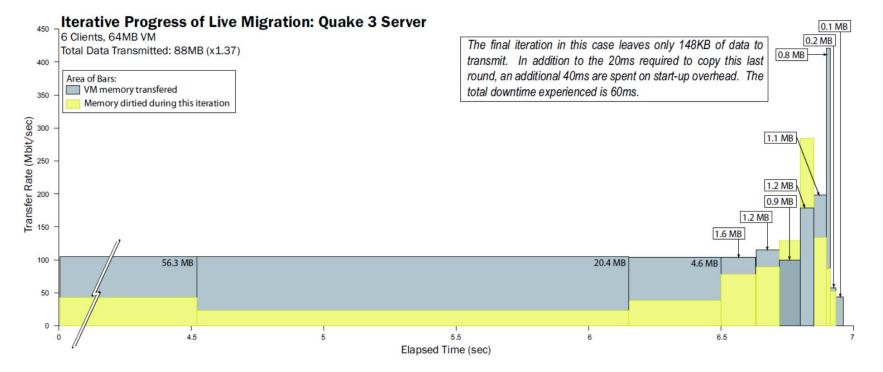

- Rapid Page Dirtying
 - Page dirtying is often physically clustered
 - Periodically 'peek' at the current round's dirty bitmap
 - Transfer only those pages dirtied in the previous round that have not been dirtied again at the time we scan them
- Stunning Rogue Process
 - Fork a monitoring thread within the OS kernel when migration begins
 - If the process dirty memory too fast, then 'stun' it
- Freeing Page Cache Pages
 - OS can return some or all of the free pages
 - Do not transfer these pages while the 1st iteration

Evaluation

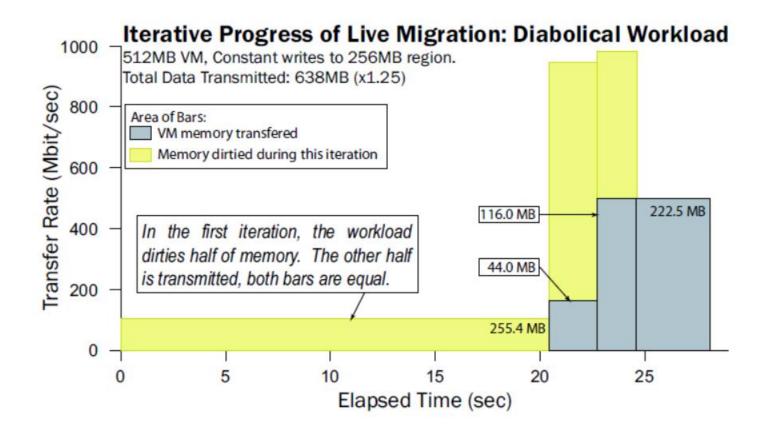
- Test Setup
 - Dell PE-2650 server-class machine
 - Dual Xeon 2Ghz CPUs
 - 2GB memory
 - Broadcom TG3 network interfaces
 - Gigabit Ethernet
 - Storage: iSCSI protocol from an NetAPP F840 NAS
 - XenLinux 2.4.27


Apache 1.3 Web server

- Simple Web Server
- Continuously serving a single 512KB file to a set of 100 clients
- Total downtime = 165ms


SPECweb99

- A complex application-level benchmark for evaluating web servers and the systems that host them
- Total downtime = 210ms


Quake 3

- A multiplayer on-line game server
- Total downtime = 60ms

MMuncher

- A VM is writing to memory faster than can be transferred
- Total downtime = 3.5 seconds

Future Work

- Cluster management
 - To develop cluster control software which can make informed decisions as to the placement and movement of VMs
- Wide Area Network Redirection
 - When migrating outside the local subnet
 - OS will have to obtain a new IP address, or some kind of indirection layer must exist
- Migrating Block Devices
 - Local disks are considerably larger than volatile memory

Conclusion

- A pre-copy live migration method on Xen VMM
- Introduce the concept of Writable Working Set (WWS)
- Dynamic network-bandwidth adaptation
 - Balances short downtime with low average network contention and CPU usage
 - Minimal impact on running services
- Small downtime with realistic server

Reference

• Christopher Clark, Keir Fraser, Steven Hand, Jacob Corm Hansen, Eric Jul, Christian Limpach, Ian Pratt, and Andrew Warfield, "Live Migration of Virtual Machines," NSDI, 2005.