CARES

F2FS: A New File System
for Flash Storage

Changman Lee, Dongho Sim, Joo-Young Hwang,

and Sangyeun Cho

*S/W Development Team, Memory Business

Samsung Electronics Co., Ltd.

USENIX FAST’15

F2FS: A New File System for Flash Storage

1/30

Contents

Introduction

Design and Implementation of F2FS
Evaluation

Conclusion

F2FS: A New File System for Flash Storage

Introduction

The Rise of SSDs
Much faster than HDDs

NAND Flash Memory
Erase-before-write
Sequential writes inside the erase unit

Limited Program/Erase (P/E) cycle

Application Open Time (seconds)

mSsD 259
W 7,200 rpm Hard Drive

Adobe Reader X (500-page PDF) Excel 2010 (Large Spreadsheet) Photoshop CS 5.1 (400MB TIF)

Flash Translation Layer
Garbage collection
Wear-leveling

Bad block management

Issues

Poor random write performance

Life span and reliability

NAND Flash Memory

F2FS: A New File System for Flash Storage

Introduction (cont.)

[/0O Patterns Sequential mmmm Random
Random writes to g 2
flash storage devices are bad P 3 s =

Free space fragmentation g g

Lifetime reduction ;0; 8

Performance degradation ¢ % W R W

Facebook Twitter

Sequential writes are % gg s]
preferred by flash storage devices % 735 ..v:-"‘":.? ;’-{ggf’.’fim:ﬁ-; :

Log-structured file systems g 75 -;'775;"';: : ~m 4

Copy-on-write file systems 720 050 100 150 200 250 300 350 400 450 500

Time (second)
Reference: Revisiting Storage for Smartphones, Kim et al., USENIX FAST 2012

CARES F2FS: A New File System for Flash Storage 4 /30

Introduction (cont.)

File System
Serves directory and file operations to users
Manages the whole storage space

Applications open(/dir/file)
— create(/dirffile) read(file, offset)
unlink(/dirffile) write(file, offset)
0s ~- . ’
[mory Mermgemert_] . A
I File System | Directory structure File structure
-
< El
‘ storage \

Conventional file systems
Optimized for HDDs

No consideration of SSDs’ characteristics

CARES F2FS: A New File System for Flash Storage 5/30

Background

Log-structured File System(LFS)
Sequential write is preferred by SSDs
Fits well to SSDs

Assuming the whole disk space as a big log
Write data and metadata sequentially

[non LFS] [LFS]
Logical [)
el | (B4 W8 MetadataArea |
o
Address L))
v
6
1> _I. O
I 2 User Data Area J :.54)
(" ©)
m 2 1
* .l = User-data Area
v 0> Metadata Area | u + Metadata Area
Time
CARES F2FS: A New File System for Flash Storage 6 /30

CARES

Log-structured File System

Log-structured file systems (LFS)

Treats a storage space as a huge log

Appends all files and directories sequentially

The state-of-the-art file systems are based on LFS or CoW
e.g., Sprite LFS, F2FS, NetApp’s WAFL, Btrfs, ZFS, ...

Write all the files and inodes sequentially . File A

Boot | Super
Sector | Block

E
5 =
< <
@ @
—h —h
= g
> w

F2FS: A New File System for Flash Storage 7 /30

Log-structured File System (Cont.)

Advantages
(+) No consistent update problem
(+) No double writes - an LFS itself is a log!

(+) Provide excellent write performance - disks are optimized for
sequential /0 operations

(+) Reduce the movements of disk headers further (e.g., inode
update and file updates)

Disadvantages
(-) Expensive garbage collection cost

(-) Slow read performance

CARES F2FS: A New File System for Flash Storage 8 /30

Disadvantages of LFS

Expensive garbage collection cost

Invalid blocks must be reclaimed for future writes; otherwise,

free disk space will be exhausted

Slow read performance

Involve more head movements for future reads
(e.g., when reading the file A)

Invalid

Write sequentially

N

Check | Check

Boot | Super point | point

Sector | Block

q Jo} apou|

\/ Jo} apoul

dejapoul

LFS: Wandering Tree Problem

How to find the root of the tree?

A A
- Write data node “D”
- Old “D” becomes obsolete
- Write indexing node “C” B B
- Old “C” becomes obsolete
- Write indexing node “B” %
- Old “B” becomes obsolete
- Write indexing node “A” C C
- Old “A” becomes obsolete ‘//

"m position of the tree in flash is changed
ne ~a

D| D Al B | C C B | A

CARES

Contribution

Design of F2FS

Flash Awareness

Alignment of file system data structures with operational units in FTL

Wandering Tree Problem
Use a term, “node”, that represents inodes as well as various pointer blocks
Introduce NAT(Node Address Table) containing the locations of all node blocks

Cleaning Overhead
Support a background cleaning
Support two different victim selection policies
Support multi-head logs for static hot and cold data separation
Introduce adaptive logging for efficient block allocation

F2FS: A New File System for Flash Storage 11 /30

Contents

Introduction

Design and Implementation of F2FS
On-Disk Layout

Index Structure

Multi-head Logging

Cleaning

Adaptive Logging

Checkpointing and Recovery

Evaluation

Conclusion

CARES F2FS: A New File System for Flash Storage 12 /30

F2FS: Flash-friendly File System

Log-structured file system for FTL devices

It runs atop FTL-based flash storage
and is optimized for it

F2FS

Block Device Driver

Exploit system-level information
for better performance

and reliability ETL
(e.g., better hot-cold separation,
background GG, ...) NAND Flash Memory
Flash Device
F2FS

CARES F2FS: A New File System for Flash Storage 13 /30

On-Disk Layout

Flash Awareness

All the file system metadata are located together for locality

Start address of main area is aligned to the zone* size Block 4B

Segment:2MB
. . . . : . Section: FTL GC unit (n Segments)
Cleaning operation is done in a unit of section Zone*: data block group
Random writes Sequential writes
| Zone | Zone | Zone | Zone |
| Section | Section | Secton | Section | Section | Secton | Section | Section |

Segment Number 0o 1 2

(1 segment = 2MB) I e e e e e e e e

Main Area

B
T T T

Superblock 0

Superblock 1

"l
-«

B
L 3

A J

2 segments 0.4% over 0.2% over
Per 2044GB main area main area Hot/Warm/Cold Hot/Warm/Cold
of main area node segments data segments
CARES F2FS: A New File System for Flash Storage

14 /30

LFS Index Structure

Suffer from the wandering tree problem

Fixed location, but separated One big log

Dir Inode

Update on file data

P y Directory data

..................................

File Inode

Indirect Direct
Pointer block [l Pointer block

F2FS: A New File System for Flash Storage

F2FS Index Structure

Node Address Translation (NAT)

Containing the locations of all the node blocks

Allows us to eliminate the wandering tree problem

Fixed location w/ locality

S
B

Inode for
directory

Inode for
regular file

Indirect
Node

r
Segment Info. Table
(SIT)

Segment Summary
(SSA)

Multiple logs

F2FS: A New File System for Flash Storage

Example: File Look-up

open (“/dir/file”)
~,-

s 200 dir inode

—> R{0[0] file inode !

F2FS: A New File System for Flash Storage

Multi-head Logging

Data Temperature Classification

Type Temperature Objects
NODE Hot Direct node blocks for directories Main area
Warm Direct node blocks for regular files
Cold Indirect node blocks l I I I I l
DATA Hot Directory entry blocks
Warm Data blocks made by users l l l l l l
Cold Data blocks moved by cleaning; Hot/Warm/Cold ~ Hot/Warm/Cold
Cold data blocks specified by users; node segments data segments

Multimedia file data

Separation of multi-head logs in NAND flash

Zone-aware log allocation for set-associative mapping FTL

F2FS: A New File System for Flash Storage

Cleaning

Cleaning Process
Reclaim obsolete data scattered across the whole storage for a new empty log space

Get victim segments

Load parent index structures from segment summary blocks
Move valid data by checking their cross-reference

Foreground Cleaning
Triggered when there are not enough free sections

Background Cleaning
A kernel thread doing the cleaning job periodically at idle time

Ssijr:g:t/ data dir data | data data | inode| data RGOS
Block o] i SIS SR (11 RER

.Y
invalidated

F2FS: A New File System for Flash Storage

Cleaning process in F2FS

Victim Selection

Valid block identification and migration

Post cleaning process

F2FS: A New File System for Flash Storage

Victim Selection

Greedy Policy

The cleaner chooses the smallest number of valid blocks

Used in foreground cleaning

Cost-Benefit Policy
The cleaner chooses a victim not only based on its utilization but also its age

Age of a section: average of the age of segments in the section
Another chance to separate hot and cold data

Used in background cleaning

benefit free space generated*age of data (1 — u)*age

cost cost 1+ u

CARES F2FS: A New File System for Flash Storage 21 /30

CARES

Valid Block Identification and Migration

Identification
Scan through a validity bitmap per segment in SIT and
identify valid blocks
Retrieve parent node blocks containing their indices from a SSA information
I‘ Random writes * Sequential writes ’I
Superblock 0 Main Area
Segment Node
Superblock 1 ':'2::(; A;i_:l::zss
(SIT) (NAT)
v v v v v v
Hot/Warm/Cold Hot/Warm/Cold
Foreground node segments data segments

Migrate valid blocks to other free logs

Background
load the blocks into page cache and mark them as dirty

F2FS: A New File System for Flash Storage YR

Post Cleaning Process

Pre-free section

Victim section is marked as a “pre-free” section
Pre-free sections are freed after the next checkpoint is made

To prevent losing data referenced by a previous checkpoint
when unexpected power outage occurs

CARES

F2FS: A New File System for Flash Storage 23 /30

CARES

Adaptive Logging

Adaptive Write Policy

Normal write policy
Logging to a clean segment
Need cleaning operations if there is no clean segment

Cleaning causes mostly random read and sequential writes

Threaded logging Threaded logging writes data

into invalid blocks in segment.
If there are not enough clean segments

| | |
Reuse obsolete blocks in a dirty segment UK

No need to run cleaning

May cause random writes (in a small range) !
segment

F2FS: A New File System for Flash Storage 24 /30

CARES

Sudden Power Off Recovery

Checkpoint and rollback

Maintain shadow copy of checkpoint, NAT, SIT blocks
Recover the latest checkpoint

Keep NAT/SIT journal in checkpoint to avoid NAT, SIT writes
Roll-forward recovery to recover fsync’ed data

[
S SSA : :
B ; |
#0, #1 dir1 file1 file? @ fsync mark
NAT/SIT
Jjournaling

If file2 is fsynced after checkpoint,
it is a candidate of roll-forward recovery during POR.

Shadow copy

F2FS: A New File System for Flash Storage 25 /30

Contents

Introduction
Design and Implementation of F2FS

Evaluation

Experimental Setup

Performance on the Mobile System
Performance on the Server System
Multi-head Logging Effect
Cleaning Cost

Adaptive Logging Performance

Evaluation

Target | System Storage Devices

EXperlmental Setup CPU: Exynos 5410 eMMC 16GB:
. obile Memory: 2GB 2GB partition:
Mobile and server SyStemS e OS: Linux 3.4.5 (114, 72, 12, 12)*
. Android: JB4.2.2
Performance comparlson between ClI:Ur: Intel i7-3770 SATA SSD 250GB:
ext4, btrfs, nilfs2 and f2fs Sargay: | MemenizAGh (486, 471,40, 140)*
OS: Linux 3.14 PCle (NVMe) SSD
960GB:
Ubuntu 12.10 server (1,295, 922, 41, 254) *

* (Seq-Rd, Seq-Wr, Rand-Rd, Rand-Wr) in MB/s

Target | Name | Workload | Files | Filesize | Threads | R/'W | f£sync
iozone Sequential and random read/write 1 1G 1 50/50 N
Mobile SQLite Random writes with frequent fsync 2 3.3MB 1 0/100 Y
Facebook-app | Random writes with frequent fsync 579 852KB 1 1/99 Y
Twitter-app generated by the given system call traces 177 3.3MB 1 1/99 Y
videoserver Mostly sequential reads and writes 64 1GB 48 20/80 N
Server fileserver Many large files with random writes 80,000 | 128KB 50 70/30 N
varmail Many small files with frequent fsync 8,000 16KB 16 50/50 Y
oltp Large files with random writes and £sync 10 800MB 211 1/99 Y

CARES F2FS: A New File System for Flash Storage 27 /30

Multi-head Logging Effect

Multi-head Logging

Using more logs gives better hot and cold data separation

| |
100

N 2 Logs
$ 80| |4Logs -
*% .l 6 Logs |
E
%
n 40 + _
©

0 | | |

0 128 256 384 512

of valid blocks
Dirty segment distribution according to the number of valid blocks in segments.

CARES F2FS: A New File System for Flash Storage 28 /30

Cleaning Cost Analysis

Under high utilization
Even in 97.5% utilization, WAF is less than 1.025

W /0 adaptive logging, WAF goes up to more than 3

——80% —O—90% --&--95% --%--097.5%

1.1 1.030
o 10 - 1.025 A 5 .
s 1.020 A VL VS SV
E 09 - 101 A
£ 015 1 o e P UG
0.8 A i
o & 1.010 o 5 . 5 5
207 - = 1.005 A
-!) F & = & & Y Y
© 1.000 4 e——* b * b * b4 * * b
g 0.6 A
g 0.995 -
0.5 1 0.990 -
0.4] I I T 1 I I 1 I 0-985 T T 1 T T
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
Runs Runs

CARES F2FS: A New File System for Flash Storage 29 /30

Adaptive Logging Performance
Adaptive logging

Gives graceful performance degradation with highly aged volume

—&—F2FS_adaptive —O—F2FS_normal -~ EXT4 - X- BTRFS

9 2.5

§2.0 .

515 - - °
T —0 O
& 1-0 T E:: _____

- ""-._,__'-' --‘D --------- D_ -------- 'D
805 | T KT X
©

€ 0.0 ; .

o

2 1 (clean) 2 (dirty) 3 (dirty) 4 (dirty)

Runs

fileserver (random operations) on a device filled up 94%.

CARES F2FS: A New File System for Flash Storage 30 /30

Evaluation Results

Mobile System Server System

Reduces write amount per fsync Varmail
by using roll-forward recovery

3 2.5
F2FS C—1 EXT4 m=ad BTRFS KN NILFS2 22 F2FS =1 EXT4 wweza BTRFS moww NILFS2 77
v 2 |- 1005 -
. : I [
2 F _ 1| = o
£ 5 15| | b - i
B E : 0.995
% o videoserver I
e]
E a 1+ 23] i .
S 1t 41 = : 5%
= © o%e%s
£ : R
B (505 ::::::
= 057 5 =
0 0 s 5 w5
Delete videoserver fileserver varmail oltp
. filebench workloads
SQLite
(1000 records, WAL mode) PCle SSD

CARES F2FS: A New File System for Flash Storage 31 /30

Contents

Introduction

Design and Implementation of F2FS
Evaluation

Conclusion

F2FS: A New File System for Flash Storage

Conclusion

F2FS Features
Flash friendly on-disk layout
Align FS GC unit with FTL GC unit
Cost effective index structure
Restrain write propagation
Multi-head logging
Cleaning cost reduction
Adaptive logging
Graceful performance degradation in aged condition
Roll-forward recovery
fsync acceleration

Performance gain over other file systems
About 3.1x speedup over Ext4

CARES F2FS: A New File System for Flash Storage 33 /30

