CARES Computer ARchitecture & Embedded Systems LAB Seoul Nat'l Univ.

The Design and Implementation of a Log-Structured File System

Mendel Rosenblum
John K. Ousterhout

Electrical Engineering and Computer Sciences, Computer Science Division, University
of California Berkeley

CARES Computer ARchitecture & Embedded Systems LAB Seoul Nat'l Univ.

Contents

* Introduction

* Log-Structued File Systems
— How to retrieve information from the log

— How to manage the free space on disk
= Cleaning Mechanism
= Cleaning Policy

e Evaluation
* Conclusion

2019-04-23 ERE (£S5 %)

CARES Computer ARchitecture & Embedded Systems LAB Seoul Nat'l Univ.

Introduction

* CPU speeds have increased dramatically
—Applications become disk-bound

* Memory sizes are growing
—Read performance is getting better
—Disk traffic consists of writes

2019-04-23 ERE (£S5 %)

CARES Computer ARchitecture & Embedded Systems LAB Seoul Nat'l Univ.

Log-Structured File Systems

e Basic structures are identical to those used in Unix FFS
—For each file, there exists a data structure called inode

* The fundamental idea is to improve write performance
—Buffering a sequence of file system changes in the file cache
—Writing all the changes to disk sequentially in a single disk write operations

2019-04-23 ERE (£S5 %)

CARES Computer ARchitecture & Embedded Systems LAB Seoul Nat'l Univ.

How to retrieve information from the log

* Goal is to match or exceed the read performance of Unix FFS

* Sprite LFS doesn’t place inodes at fixed positions
—They are written to the log
—inode map must be indexed to determine the disk address of the inode

#Segment: Large fixed-size extents for logging
(transfer time >>>> cost of seek to the segment)

FFS Disk Structure LFS Disk Structure
Group 0 Group 1 Group 2 Group N S Checkpoint Seg:;‘e“‘ Segment Segment | checkpoint

-

-~ ~
-
-
/’,
-
4”
-
Ib b 'inodcs data

Logging

Y

Each inode is at a fixed location on disk inode map maintain the location of each inode

2019-04-23

CARES Computer ARchitecture & Embedded Systems LAB Seoul Nat'l Univ.

How to manage the free space on disk

* Goal is to maintain large free extents for writing new data

* Free space will be fragmented into many small extents
—Corresponding to the files that were deleted or overwritten

* Copy and Compact the live data, but the log is threaded on a segment-by-

segment basis
S Checkpoint Segment 0 Segment 1 ﬂ Segment M Checkpoint

Theaded on a segment-by-segment basis

LFS Disk Structure Threaded log (Point next free segment)
S Checkpoint Segment 0 Segment 1 LLL] Segment M Checkpoint T I l)
Logging
A P f Large contiguous writes won't be possible
= fCopy and Compact)

Copying cost exits
pying J,

2019-04-23

CARES Computer ARchitecture & Embedded Systems LAB Seoul Nat'l Univ.

Cleaning mechanism

* The process of copying live data out of a segment is called segment cleaning
—Step 1. Read a number of segments into memory
—Step 2. Identify the live data
—Step 3. Write the live data back to a smaller number of clean segments

* Following information must be identified to update the file’s inode to point
to the new location of the block

—Which data is live ?
—Which file does each block belongs to?
—Where is the block located in the file?

Logging

2019-04-23 ERE (£S5 %)

CARES Computer ARchitecture & Embedded Systems LAB Seoul Nat'l Univ.

Cleaning mechanism (Cont.)

* Sprite LFS solves both of these problems by writing a segment summary block as
part of each segment.

* Segment summary block identifies each piece of information that is written
in the segment

—For each file data block the summary block contains the file number(inode number)
and block number(offset) of the block

—It is also used to distinguish live blocks from those that have been overwritten or
deleted

Is this block live?

| [3] See where the 2th block of this file is on disk
[1] Read the block’s inode number(N™~ "~ “77 7ad where N lives

Segment

Summary
Block

Y
invalidated

2019-04-23 ERE (£S5 %)

CARES Computer ARchitecture & Embedded Systems LAB Seoul Nat'l Univ.

Segment Cleaning Policies

* Policies Issues
1. Which segments to clean?
= Greedy / Cost-benefit cleaning policy

2. When to clean?
= When the number of free segments falls below a certain threshold

3. How many segments to clean?
" Few tens of segments at a time, more segments cleaned at a time,
the more opportunities to rearrange

4. How to group live blocks be grouped while cleaning?
= Sort the blocks by the time they were last modified and group blocks
of similar age into new segments

2019-04-23 ERE (£S5 %)

CARES Computer ARchitecture & Embedded Systems LAB Seoul Nat'l Univ.

Segment Cleaning Policies — Cleaning cost Metric

* Implementation
—The Write-cost Metric - A way of comparing cleaning policies

. read segs + write live + write new - N+N+«u+N+{1—t) 2
—Write-cost : . = - =
new data written new-data-written 1-u

v ! utilization of the segmentsand 0 < v< 1
N : # of segments participate in cleaning

* LFS provide a cost-performance trade-off
—If disk capacity utilization is increased, storage costs are reduced
but so is performance

2019-04-23

CARES Computer ARchitecture & Embedded Systems LAB Seoul Nat'l Univ.

Cleaning Goal

* The Key to achieve high performance at low cost
—Small # of low-utilized segments : cleaner can always find easy segments to clean
—Large # of high-utilized segments : disk is well utilized

/ N\
'y / \
segs / / Y
o

RSN \ |
/ ."f \ \ \I ;
[I)fl : \ \ /
' \ Y
N _ - ~ _ ’I/ ,,,
: u : u: utilization of segment, 0 <u <1
e v
: - Tttt T T I
I for cheap cleaning | I for high disk utilization 1

2019-04-23

CARES Computer ARchitecture & Embedded Systems LAB Seoul Nat'l Univ.

«] Hot segments

Segment Cleaning Policy : Greedy Policy S :

) Fraction of segments
* Greedy policy : ; | ;

— Always chose the least-utilized 0008
segments to clean 0.007
0.006 -
* LFS uniform : 0.005
—Uniform pick random files to overwrite 0.004 . Hot-and-cold
0.003 _
* LFS hot-and-cold: 0.002 _ Uniform
—Hot-cold workload(90% of the updates to 10% 0.001)
of files) : |
0.000

00 02 04 06 08 10

. . . . Segment utilization
* Greedy is not creating bimodal distribution!

why so clustered?
1. Hot segments join in cleaning again soon after cleaning

2. Cold segments tend to linger just above the cleaning point 2
Cold segments is not cleaned until low utilization _> TW”te cost: 1—ut

2019-04-23

CARES Computer ARchitecture & Embedded Systems LAB Seoul Nat'l Univ.

Segment Cleaning Policy : Cost-benefit

* Goal

— Allow cold segments to be cleaned at a much higher utilization than hot
segments

* Cleaner policy : cost-benefit

benefit _ free space generated * ageofdata _ (1-u)*age

cost cost 14+u

u: utilization of segment
age: most recent modified time

Of any block in the segment
Cold segment : 1

Hot segment : |

2019-04-23

CARES Computer ARchitecture & Embedded Systems LAB Seoul Nat'l Univ.

Effect of Cost/Benefit Policy

Fr”tctlml Df Segmellts | | | for high disk utilization 1
————————— - 0.008 - i
| for cheap cleaning :k 0.007
0.006
*0.005
0\&04
0. 003\ _
0.002 - ‘ /
0.001 - 1\
0.000 -

__LFS Cost-Benefit

IS
i LFS Greedy

00 02 04 06 08 10
Segment utilization

Prohibit from Only-cleaning of host segments
» Cold segments cleaned at around 75% utilization
» Hot segments cleaned at around 15% utilization

2019-04-23 ERE (£S5 %)

CARES Computer ARchitecture & Embedded Systems LAB Seoul Nat'l Univ.

Cost-benefit Analysis

Write cost | | | |
14.0 r ___ r No variance
20 - e .
12.0 LES Greedy
10.0™ . FFStoday
8.0 -
6.0 , LFS Cost-Benefit
A e T RES improved.
2.0
00 02 04 06 0810
Disk capacity utilization Before 0.8,

LFS Cost-Benefit write cost
is lower than any policy

2019-04-23 ERE (£S5 %)

CARES Computer ARchitecture & Embedded Systems LAB Seoul Nat'l Univ.

Crash Recovery

e Crash in other FS of UNIX

—Disk may be in inconsistent state
=File created but directory is not updated

°In LFS

—Just look at end of log
—1. Checkpoint(define consistent state of file system)
—2. Roll-forward(to recover information written since the last checkpoint)

2019-04-23 ERE (£S5 %)

CARES Computer ARchitecture & Embedded Systems LAB Seoul Nat'l Univ.

Checkpoints
* A checkpoint is a position in the log where all file systems structures are consistent

* Creation of a checkpoint:
—1. Write out all modified info to log, including metadata

—2. Write checkpoint region to special place on Disk _
inode map

/

checkpoint segment segment segment segment
region

* On reboot, read checkpoint region to initialize main-memory data structures(ex. Inode)

2019-04-23

CARES Computer ARchitecture & Embedded Systems LAB Seoul Nat'l Univ.

Roll-forward

* Goal : try to recover as much data as possible

—Recovering to latest checkpoint would result in loss of too many recently written
data

* During roll-forward Sprite LFS:
—1. Uses information in segment summary blocks to recover recently-written
file data.

—2. When summary block indicates presense of a new I-node, update I-node map
read from checkpoint

—3. Incorporate the file’s new data blocks into recovered file system

2019-04-23 ERE (£S5 %)

CARES Computer ARchitecture & Embedded Systems LAB Seoul Nat'l Univ.

Evaluation

* Use a collection of small benchmark programs to measure the best-case
performance of Sprite LFS

—Sprite LFS vs Sun0S 4.0.3

Sun-4/260

Main memory 32MB

Capacity: 300MB
Bandwidth: 1.3MB/s
Seek time: 17.5ms (avg.)

Block size 4KB 8KB

Segment size 1MB X

2019-04-23

CARES Computer ARchitecture & Embedded Systems LAB Seoul Nat'l Univ.

Small-File Performance with no cleaning

* Step 1. Create 10000 1KB files
* Step 2. Read them back in the same order as created
* Step 3. Delete them

Key: | | Sprite LFS SunOS

Speed Metric : the number of files per second Files/sec (measured)
180 [~

1) —
Sprite LFS is much better 140 g 5 B
B — e —

100 | mmamg oo e

80 [i S

6O TrTTeE

4011 N AT NN R SR

S 51 A P

Create Read Delete

2019-04-23 ERE (£S5 %)

CARES Computer ARchitecture & Embedded Systems LAB

Seoul Nat'l Univ.

Large-File Performance with no cleaning

* Step 1. Create 100MB file with sequential writes
* Step 2. Read the file back sequentially

| Sprite LFS

2019-04-23

SunOS

kilobytes/sec

900
800
700
600
500
400
300
200
100

Write

Read

Sequential

EQX (¢35 %)

Write Read Reread
Random Sequential

Corrupt file block's order

CARES Computer ARchitecture & Embedded Systems LAB Seoul Nat'l Univ.

Cleaning overheads

* Record statistics about production LFS over a period of 4 months

—Start-up effects is eliminated

Wnte cost ‘ . ‘ ‘
14,07 N

120--; 3
1.0 | ' Cleaning overheads limit the long-term write performance

o3 0) | to about 70% of the maximum sequential write bandwidth !

40
H __—-/
20

P E— 759/11 ___________________________ |
00 02 04 06 08 10 'Better than simulation result |

Disk capacity wilization = bF————————————————————————

Write cost in Sprite LFS file systems

File system | Disk | AvgFile | Avg Write | In Use | Segments u . Write
Size Size Traffic Cleaned | Empty = Avg - Cost
/usere6 1280 MB = 235KB 3.2 MB/hour 75% 10732 69% 133 1.4
- /pcs 990 MB | 10.5KB 2.1 MB/hour 63% 22689 | 52% 137 1.6
/src/kernel | 1280 MB | 37.5 KB 4.2 MB/hour 72% 16975 83% 122 1.2
/ tmp . 264MB | 289KB | 1.7MB/hour | 11% | 2871 78% | 130 | 1.3
| /swap?2 | 309MB | 68.1KB | 13.3MB/hour | 65% | 4701 | 66% | 535 | 1.6

2019-04-23

CARES Computer ARchitecture & Embedded Systems LAB Seoul Nat'l Univ.

Cleaning overheads (Cont.)

* In practice, there are a substantial number of longer files
—They tend to be written and deleted as a whole

—In the best case, where a file is much longer than a segment, deleting the file will
produce one or more totally empty segments

* In practice, cold segments are much colder than in the simulations
—The effect of cold file isolation improved

Fraction of segments

Fraction of segments 0.180 o A A A A 1
0.008 0.160
0.007 | Much better ! 0.140 -
0.006 0.120 =
0.005 — 0.100 |
0.004 - S 0.080
0.003 I__LFS Cost-Benefit 0.060
0.002 = 0.040
0.001 0.020 W
0.000 —F R oo
00 02 04 06 08 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Segment utilization Segment utilization
Result in Simulation Result in Practice

2019-04-23

CARES Computer ARchitecture & Embedded Systems LAB Seoul Nat'l Univ.

Conclusion

* LFS introduces a new approach to updating the disk
—Writes to an unused portion of the disk, then later reclaims that old space

* This approach enables highly efficient writing
—Gather all updates into an in-memory segment and write them out together

* It works well for small files accesses as well as large files accesses

* LFS make it possible to take advantage of faster processors

2019-04-23 ERE (£S5 %)

CARES Computer ARchitecture & Embedded Systems LAB Seoul Nat'l Univ.

Crash Recovery

* Crashes when write to the Checkpoint Region
—LFS keeps two CRs, writes to them alternately

—LFS implements a careful protocol when updating
1. Write out a header(with timestamp)
2. Write out the body of the CR(information including imap)
3. Finally writes one last block (with timestamp)

Updating in time CR1 Updated in time TI
T+1 _4 TS1 = TS1=T
1+1
crash occur IS1 1= TS2
1s2=2 [© TS2=T

use CR2 for recovery

2019-04-23

CARES Computer ARchitecture & Embedded Systems LAB Seoul Nat'l Univ.

_Data structure | Plupose . | Location | Section

Inode Locates b]ocks of ﬁ]e holds plotectlen bits. modify time, etc.

Inode map | Locates position ¢ of mode 1n log, holds time 0f last access p]us version 11u111be1
Indirect block | Locates blocks of L’ll e ﬁles

~Segment summary ___________________Idennﬁes contents Gf seoment (ﬁ]e number and offset fm mch b]ock)

Ix
=]

e e e 09

=
=]

Chec*kpmnt region h
._PH.EFE?F}{...91}9!}5?...19.2................B:F.EEE.Q.%...E?}FEEPE?}}....

DJ?‘°~'1"[10“5m11”111["‘111‘30“515[‘5‘11‘9“‘DfI‘i'f'i"‘f'“‘f‘i'C'Uums111111‘3'(15'5 . Log | 42

2019-04-23

Crash Recovery

Sprite LFS recovery time 1n seconds

File File Data Recovered
Size IMB | 10MB | 50 MB
1 KB | 21 132
10 KB <1 3 17
100 KB <1 1 8

EQX (¢35 %)

CARES Computer ARchitecture & Embedded Systems LAB Seoul Nat'l Univ.

Other overheads

Sprite LES /useré6 file system contents
Block type Live data | Log bandwidth

Data blocks™ 98.0% 85.2%
Indirect blocks* 1.0% 1.6%
Inode blocks™ 0.2% 2.7%
Inode map 0.2% 7.8%
Seg Usage map* 0.0% 2.1%
Summary blocks 0.6% 0.5%
Dir Op Log 0.0% 0.1%

2019-04-23 ERE (£S5 %)

