
Computer ARchitecture & Embedded Systems LAB Seoul Nat’l Univ.

The Design and Implementation of a Log-Structured File System

Mendel Rosenblum

John K. Ousterhout

Electrical Engineering and Computer Sciences, Computer Science Division, University 
of California Berkeley

도오조



Computer ARchitecture & Embedded Systems LAB Seoul Nat’l Univ.

• Introduction

•Log-Structued File Systems
– How to retrieve information from the log

– How to manage the free space on disk

▪ Cleaning Mechanism 

▪ Cleaning Policy

•Evaluation

•Conclusion

Contents

22019-04-23 도오조 (どうぞ)



Computer ARchitecture & Embedded Systems LAB Seoul Nat’l Univ.

• CPU speeds have increased dramatically

–Applications become disk-bound

• Memory sizes are growing
–Read performance is getting better

–Disk traffic consists of writes

• Growing gap between random small file access and sequential large file 
access Performance
–Disk transfers bandwidth has increased

–Disk access times have evolved much more slowly

• Existing file systems perform poorly on small random disk I/O
–They spread information around the disk in a way that causes too many small 

accesses

–They tend to write synchronously

Introduction

32019-04-23 도오조 (どうぞ)



Computer ARchitecture & Embedded Systems LAB Seoul Nat’l Univ.

• Basic structures are identical to those used in Unix FFS

–For each file, there exists a data structure called inode

• The fundamental idea is to improve write performance

–Buffering a sequence of file system changes in the file cache

–Writing all the changes to disk sequentially in a single disk write operations

• Two key issues must be resolved to achieve the benefits of the logging

–How to retrieve information from the log

–How to manage the free space on disk

▪Large extent of free space must be always available for writing new data 

Log-Structured File Systems

42019-04-23 도오조 (どうぞ)



Computer ARchitecture & Embedded Systems LAB Seoul Nat’l Univ.

• Goal is to match or exceed the read performance of Unix FFS

• Sprite LFS doesn’t place inodes at fixed positions

–They are written to the log

–inode map must be indexed to determine the disk address of the inode

How to retrieve information from the log

5

S
i
b

d
b

inodes data

Group 0 Group 1 Group 2 Group N

FFS Disk Structure

dir Logging

S Checkpoint
Segment 

0
Segment 

1
Segment 

M
Checkpoint

LFS Disk Structure

Each inode is at a fixed location on disk inode map maintain the location of each inode

data data dirinode inode
inode
map

2019-04-23

#Segment: Large fixed-size extents for logging

(transfer time >>>> cost of seek to the segment)

도오조 (どうぞ)



Computer ARchitecture & Embedded Systems LAB Seoul Nat’l Univ.

• Goal is to maintain large free extents for writing new data

• Free space will be fragmented into many small extents

–Corresponding to the files that were deleted or overwritten

• Copy and Compact the live data, but the log is threaded on a segment-by-
segment basis

How to manage the free space on disk

6

Logging

S Checkpoint Segment 0 Segment 1 Segment M

LFS Disk Structure

a
a
0

b
1

b
2

b
3

b
b
0

b
2

b‘’
b
1

b'

Logging

Logging

Threaded log

Copy and Compact

S Checkpoint Segment 0 Segment 1 Segment M CheckpointSegment 0 Segment 1 Segment M

Large contiguous writes won’t be possible

Copying cost exits

Theaded on a segment-by-segment basis
(Point next free segment)

Checkpoint

2019-04-23 도오조 (どうぞ)



Computer ARchitecture & Embedded Systems LAB Seoul Nat’l Univ.

• The process of copying live data out of a segment is called segment cleaning

–Step 1. Read a number of segments into memory

–Step 2. Identify the live data

–Step 3. Write the live data back to a smaller number of clean segments 

• Following information must be identified to update the file’s inode to point 
to the new location of the block

–Which data is live ?

–Which file does each block belongs to?

–Where is the block located in the file?

Cleaning mechanism

7

Logging
data dirinode inode

inode
map

data data data data inode data data data inode

2019-04-23 도오조 (どうぞ)



Computer ARchitecture & Embedded Systems LAB Seoul Nat’l Univ.

• Sprite LFS solves both of these problems by writing a segment summary block as 
part of each segment.

• Segment summary block identifies each piece of information that is written 
in the segment

–For each file data block the summary block contains the file number(inode number) 
and block number(offset) of the block

–It is also used to distinguish live blocks from those that have been overwritten or 
deleted

Cleaning mechanism (Cont.)

8

Logging

data dirinode inode
inode
map'

data
[0]

data
[1]

data
[2]

data
[3]

Inode

N
data
[1]’

data
[2]’

data
[3]’

Inode

N’

Segment
Summary

Block

Is this block live?

[1] Read the block’s inode number(N) & block number(2th) [2] Find where N lives
[3] See where the 2th block of this file is on disk 

invalidated
2019-04-23

inode
map

Not Same! It’s not live block

도오조 (どうぞ)



Computer ARchitecture & Embedded Systems LAB Seoul Nat’l Univ.

•Policies Issues
1. Which segments to clean?

▪ Greedy / Cost-benefit  cleaning policy

Segment Cleaning Policies 

2019-04-23 9

2.  When to clean?

▪ When the number of free segments falls below a certain threshold

3.  How many segments to clean?

▪ Few tens of segments at a time, more segments cleaned at a time, 

the more opportunities to rearrange

4. How to group live blocks be grouped while cleaning?

▪ Sort the blocks by the time they were last modified and group blocks

of similar age into new segments

도오조 (どうぞ)



Computer ARchitecture & Embedded Systems LAB Seoul Nat’l Univ.

• Implementation 

–The Write-cost Metric - A way of  comparing cleaning policies

–Write-cost :  
𝑟𝑒𝑎𝑑 𝑠𝑒𝑔𝑠 + 𝑤𝑟𝑖𝑡𝑒 𝑙𝑖𝑣𝑒 + 𝑤𝑟𝑖𝑡𝑒 𝑛𝑒𝑤

𝑛𝑒𝑤 𝑑𝑎𝑡𝑎 𝑤𝑟𝑖𝑡𝑡𝑒𝑛
= 

𝑁+𝑁∗𝑢+𝑁∗(1−𝑢)

𝑛𝑒𝑤 𝑑𝑎𝑡𝑎 𝑤𝑟𝑖𝑡𝑡𝑒𝑛
=

2

1−𝑢

• LFS provide a cost-performance trade-off

–If disk capacity utilization is increased, storage costs are reduced 

but so is performance

Segment Cleaning Policies – Cleaning cost Metric

2019-04-23 10도오조 (どうぞ)

u : utilization of the segments and 0 ≤ u < 1
N : # of segments participate in cleaning



Computer ARchitecture & Embedded Systems LAB Seoul Nat’l Univ.

• The Key to achieve high performance at low cost

–Small # of low-utilized segments : cleaner can always find easy segments to clean

–Large # of high-utilized segments : disk is well utilized

Cleaning Goal

2019-04-23 11

for cheap cleaning for high disk utilization

도오조 (どうぞ)

u:    utilization of segment, 0 ≤ u < 1



Computer ARchitecture & Embedded Systems LAB Seoul Nat’l Univ.

• Greedy policy : 
– Always chose the least-utilized 

segments to clean

• LFS uniform : 
–Uniform pick random files to overwrite

• LFS hot-and-cold:
–Hot-cold workload(90% of the updates to 10% 

of files)

Segment Cleaning Policy : Greedy Policy

2019-04-23 12

why so clustered?

1. Hot segments join in cleaning again  soon after cleaning 

2. Cold segments tend to linger just above the cleaning point

Cold segments is not cleaned until low utilization

Cold segments

Hot segments

도오조 (どうぞ)

𝑤𝑟𝑖𝑡𝑒 𝑐𝑜𝑠𝑡:
2

1 − 𝑢

• Greedy is not creating bimodal distribution!



Computer ARchitecture & Embedded Systems LAB Seoul Nat’l Univ.

• Goal 

– Allow cold segments to be cleaned at a much higher utilization than hot      
segments

• Cleaner policy : cost-benefit

𝑏𝑒𝑛𝑒𝑓𝑖𝑡

𝑐𝑜𝑠𝑡
=  

𝑓𝑟𝑒𝑒 𝑠𝑝𝑎𝑐𝑒 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑

𝑐𝑜𝑠𝑡

Segment Cleaning Policy : Cost-benefit

2019-04-23 13

∗ 𝑎𝑔𝑒 𝑜𝑓 𝑑𝑎𝑡𝑎

Cold segment : ↑
Hot segment  : ↓

u:    utilization of segment
age: most recent modified time

Of any block in the segment 

= 
1−𝑢 ∗𝑎𝑔𝑒

1+𝑢

도오조 (どうぞ)



Computer ARchitecture & Embedded Systems LAB Seoul Nat’l Univ.

Effect of Cost/Benefit Policy

2019-04-23 14

Prohibit from Only-cleaning of host segments
• Cold segments cleaned at around 75% utilization
• Hot segments cleaned at around 15% utilization 

도오조 (どうぞ)

for cheap cleaning

for high disk utilization



Computer ARchitecture & Embedded Systems LAB Seoul Nat’l Univ.

Cost-benefit Analysis

2019-04-23 15

Before 0.8,
LFS Cost-Benefit write cost
is lower than any policy

도오조 (どうぞ)



Computer ARchitecture & Embedded Systems LAB Seoul Nat’l Univ.

•Crash in other FS of UNIX
–Disk may be in inconsistent state

▪File created but directory is not updated

• In LFS
–Just look at end of log

–1. Checkpoint(define consistent state of file system)

–2. Roll-forward(to recover information written since the last checkpoint)

Crash Recovery

2019-04-23 16도오조 (どうぞ)



Computer ARchitecture & Embedded Systems LAB Seoul Nat’l Univ.

• A checkpoint is a position in the log where all file systems structures are consistent

• Creation of a checkpoint:

–1. Write out all modified info to log, including metadata

–2. Write checkpoint region to special place on Disk

Checkpoints

2019-04-23 17

inode map

• On reboot, read checkpoint region to initialize main-memory data structures( ex. Inode )

도오조 (どうぞ)



Computer ARchitecture & Embedded Systems LAB Seoul Nat’l Univ.

• Goal : try to recover as much data as possible

–Recovering to latest checkpoint would result in loss of too many recently written 
data

• During roll-forward Sprite LFS:

–1. Uses information in segment summary blocks to recover recently-written 

file data.

–2. When summary block indicates presense of a new I-node, update I-node map 
read from checkpoint

–3. Incorporate the file’s new data blocks into recovered file system

Roll-forward

2019-04-23 18도오조 (どうぞ)



Computer ARchitecture & Embedded Systems LAB Seoul Nat’l Univ.

Evaluation

19

• Use a collection of small benchmark programs to measure the best-case 
performance of Sprite LFS

–Sprite LFS vs SunOS 4.0.3

Sprite LFS SunOS

Workstation Sun-4/260

Main memory 32MB

Disk
Capacity: 300MB

Bandwidth: 1.3MB/s
Seek time: 17.5ms (avg.)

Block size 4KB 8KB

Segment size 1MB X

2019-04-23 도오조 (どうぞ)



Computer ARchitecture & Embedded Systems LAB Seoul Nat’l Univ.

Small-File Performance with no cleaning

20

• Step 1. Create 10000 1KB files

• Step 2. Read them back in the same order as created

• Step 3. Delete them

Speed Metric : the number of files per second

Sprite LFS is much better

2019-04-23 도오조 (どうぞ)



Computer ARchitecture & Embedded Systems LAB Seoul Nat’l Univ.

Large-File Performance with no cleaning

21

• Step 1. Create 100MB file with sequential writes

• Step 2. Read the file back sequentially

• Step 3. Writes 100MB randomly to the existing file

• Step 4. Read 100MB randomly from the file

• Step 5. Read the file sequentially again

Sprite LFS turns workloads into sequential writes to the log
SunOS performs individual disk operations for each block

Sprite LFS requires more seeks than SunOS
Because the order of the file blocks is more chaotic

2019-04-23 도오조 (どうぞ)

Corrupt file block’s order



Computer ARchitecture & Embedded Systems LAB Seoul Nat’l Univ.

Cleaning overheads

22

• Record statistics about production LFS over a period of 4 months

–Start-up effects is eliminated 

Cleaning overheads limit the long-term write performance 
to about 70% of the maximum sequential write bandwidth

Better than simulation result

~3.0

75%

2019-04-23 도오조 (どうぞ)



Computer ARchitecture & Embedded Systems LAB Seoul Nat’l Univ.

Cleaning overheads (Cont.)

23

• In practice, there are a substantial number of longer files

–They tend to be written and deleted as a whole

–In the best case, where a file is much longer than a segment, deleting the file will 
produce one or more totally empty segments

• In practice, cold segments are much colder than in the simulations

–The effect of cold file isolation improved

Result in Simulation Result in Practice

Much better !

2019-04-23 도오조 (どうぞ)



Computer ARchitecture & Embedded Systems LAB Seoul Nat’l Univ.

• LFS introduces a new approach to updating the disk

–Writes to an unused portion of the disk, then later reclaims that old space

• This approach enables highly efficient writing

–Gather all updates into an in-memory segment and write them out together

• It works well for small files accesses as well as large files accesses

• LFS make it possible to take advantage of faster processors

Conclusion

242019-04-23 도오조 (どうぞ)



Computer ARchitecture & Embedded Systems LAB Seoul Nat’l Univ.

• Crashes when write to the Checkpoint Region
–LFS keeps two CRs, writes to them alternately

–LFS implements a careful protocol when updating

1. Write out a header(with timestamp)

2. Write out the body of the CR(information including imap)

3. Finally writes one last block (with timestamp)

Crash Recovery

25/20

CR 2

TS1 = T

TS2 = T

CR 1

TS1 = 
T+1

TS2 = ?

Updated in time TUpdating in time 
T+1

crash occurs TS1 != TS2

use CR2 for recovery

2019-04-23 도오조 (どうぞ)



Computer ARchitecture & Embedded Systems LAB Seoul Nat’l Univ.

2019-04-23 도오조 (どうぞ) 26



Computer ARchitecture & Embedded Systems LAB Seoul Nat’l Univ.

Crash Recovery

272019-04-23 도오조 (どうぞ)



Computer ARchitecture & Embedded Systems LAB Seoul Nat’l Univ.

Other overheads

282019-04-23 도오조 (どうぞ)


