
SEDA

컴퓨터 구조

강우석, 최종우



• Background Concepts

– Thread Based Concurrency

– Bounded Thread Based Concurrency

– Event-Driven Concurrency

– Structured Event Queue

• Implement

– Stages

– Dynamic Resource Controllers

– Asynchronous I/O

– Application and Test Evaluation

• Conclusion

Table of Contents

2



• User Level Threads vs Kernel Level Threads

– User level threads has better performance?!

– Flexibility

– Concurrency

– Virtualized processor

Background Concepts
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• Special Aspects of Server on Threads.

– Application cannot control kernel priority: live lock, starvation

• Solution : 

– Exposing more control to applications

– Augment limited operating system interface

– Scheduler activation

– Application-Specific Handler

– SPIN

– Exokernel

Thread Based Concurrency
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• Limits or bond thread with other ideas

– Resource container : application to associate scheduling 

information with activity

– Scout : Mix thread with how to make ”path” through layers.

Bounded Thread Based Concurrency
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• Better scalability

• Run event queues with loop

• Robust to load, little degradation beyond saturation

• Non-blocking I/O is required, but most of prior work 

has event-processing threads that can block I/O

• Scheduling and ordering is key

• JAWS :

– Analyze Web server performance bottlenecks

– Studied trade-off between thread and event-driven concurrent 

models

– Emphasizes adaptivity in service design

Event-Driven Concurrency
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• To improve modularity and make easier scheduling and 
ordering, make set of event queues

• Queue of two different components are managed 
separately

• SEDA is in this category

• Click : 
– Encapsulates packet processing stages into “Element”

– Targets specific applications.

– Single thread serves all event queues

– Relatively static schedule based on bounded processing time

• DDS 
– Emulates asynchronous network and disk I/O interface with fixed size 

of thread pools

– Software components are composed with event queue or upcalls

• Other examples:
– Work Crew(1989), TSS/360 Scanner(1968)

Structured Event Queue
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• Sandstorm

• Made in Java

• To improve performance,  fine tuning has done.

Implement
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Stages
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• Stage is made up of event queue, thread pool, 

event handler. 

• Resource controller allocates and schedules 

system dynamically.



Dynamic Resource Controllers

10

• Controller that adjusts its resource allocation

– Thread pool controller adjusts the number of 

– Batching controller adjusts the number of events 

processed by each iteration



Asynchronous socket I/O

11

Composition

- 3 interfaces : asyncClientSocket, asnycServerSocket, asyncConnection

- 3 stages : Read stage, Listen stage, Write stage

- 2 queues : from user, from OS



Asynchronous socket I/O
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Detail

- Queue

- Timeout mechanism을 이용하여 두 queue를 번갈아서비스

- Library 형태로구현되어동작 시 OS call을 부름
- UNIX poll과 /dev/poll 지원

- Randomize order

- 목적 : Fairness의 확보
- Reordering 이유 : OS는 보통 socket event를 고정된순서로제공



Asynchronous socket I/O
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Detail

- Read stage

- I/O readiness event가 데이터를가진이용가능한소켓이있음을 알
려줄때읽음

- 각 socket request 당 16KB buffer 할당

- Java의 garbage collection을 deallocation 시이용

- Optional rate controller

- 기준 : moving average of incoming packet rate

- 방식 : event-processing loop의 delay

- 효과 : load-shedding



Asynchronous socket I/O
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Detail

- Write stage

- 사용자로부터 request를받고서 OS가 socket이 이용가능하다할때
마다다음 packet을 씀

- ‘slow’ sockets 방지
- ‘slow’ sockets 원인

: 많은양의 outgoing packet이 특정 connection에 집중될때
queue의 length와 메모리 사용량이지나치게증가하는문제

- 해결 방법
: 임계를넘어가는연결을끊는방법이용



Asynchronous file I/O
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Composition

- Blocking I/O와 bounded thread pool로 구성

- asyncFile object를 이용

- read, write, seek, stat, close 인터페이스 제공

How it works

- 한파일당하나의 thread 이용

- Thread pool controller가 concurrency수요에 따라동적으로 thread 

제어

- 최대 20개까지 thread 수증가



Haboob
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High-performance HTTP Server based on SEDA

- 10 stages

- 4 Asynchronous socket & disk I/O

- HttpParse & HttpRecv & HttpSend

- PageCache & CacheMiss



Haboob
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Gnutella packet router 
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Gnutella
- Peer-to-peer network service

- Asynchronous socket I/O + 3stages(GnutellaServer, GnutellaRouter, GnutellaCatcher)



Conclusion
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Main Contribution

- Stage를통해 Modularity를 확보하여 debugging이 쉽고 scalable하며 비
교적 application 작성이쉬운인터넷 서비스디자인을제시

- Controller를 통해 request간 fairness를 확보하여 predictable하게
response time이감소하는서비스 제공

Expectation

- Multi-machine 환경에서도추가적인 resource virtualization 없이서비스
를구현할수 있을것으로기대

- 다양한 scheduling policy가 개발 될것으로기대



Pro & Con
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Pro
- Focused, application-specific admission control

- Exposure of the request stream

- Modularity and performance isolation

Con
- Application 개발자에게 여전히구현부담

- Queueing과 context switch의 overload가 크다

- Java의 garbage collection 기능은 high-performance 시스템에적
합하지않다



Cons.
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System Support for Pervasive Applications
ROBERT GRIMM et al.

- SEDA의 2가지문제점언급

- Application을 Stage로구성해야하는어려움

- Stage간 event queueing 방식을 Application 개발자가 직접작성해야한다는 어려움

- one.world (integrated framework for building adaptable applications) 제안



Cons.
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Why Events Are A Bad Idea 

(for high-concurrency servers)
Rob von Behren, Jeremy Condit and Eric Brewer

- Thread 시스템의정당성논증

- 실제 Haboob과 Knot의비교를 통해 SEDA의문제점지적

- Haboob 성능저하추정원인

- Stage마다 thread pool 운용으로결국전체적으로 굉장히많은 context switch 존재

- 다수의 crossing과 queuing operation 존재

- Java의 garbage collection이성능저하를 일으킴



Subsequent Thesis
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Adaptive Overload Control for Busy Internet Servers
Matt Welsh and David Culler

- 동적으로 Overload를조절하는 방법설명
- Metric : 90th-percentile response time

- 동작 :

- Monitor : Response time 측정
- Controller : admission control parameter 조절

- 논문에서는 Token Bucket의 token이 생성되는 rate를 조절하는 방식으로
동작하나다양한조절정책이 적용될수있음을언급

- Priority에 기반한 class-based service level agreements와 관련된 여러 정
책을적용할수있음을언급

Capriccio: Scalable Threads for Internet Services
Rob von Behren, Jeremy Condit, Feng Zhou, George C. Necula and Eric Brewer

- High Concurrency를지원하는 Thread 기반의아키텍처제시
- User-level thread 이용



Appendix : Think more

24

Agile Dynamic Provisioning of Multi-Tier Internet Applications
Bhuvan Urgaonkar, Prashant Shenoy, Abhishek Chandra, Pawan Goyal and Timothy Wood

- SEDA가 provisioning issue를고려하지않았음을언급
- Dynamic Provisioning을 Multi-tier 프로그램에 적용하면 heavy workload에서 좀 더 안정적인 서
비스환경제공을생각해볼수있음

A method for transparent admission control and request 

scheduling in e-commerce web sites
Sameh Elnikety, Erich Nahum, John Tracey and Willy Zwaenepoel

- 간접적으로 overload를측정하는 SEDA와 달리스크립트당리소스의사용을측정
- 좀더정확하고세분화된조절을할수있음
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