
SEDA

컴퓨터 구조

강우석, 최종우

• Background Concepts

– Thread Based Concurrency

– Bounded Thread Based Concurrency

– Event-Driven Concurrency

– Structured Event Queue

• Implement

– Stages

– Dynamic Resource Controllers

– Asynchronous I/O

– Application and Test Evaluation

• Conclusion

Table of Contents

2

• User Level Threads vs Kernel Level Threads

– User level threads has better performance?!

– Flexibility

– Concurrency

– Virtualized processor

Background Concepts

3

• Special Aspects of Server on Threads.

– Application cannot control kernel priority: live lock, starvation

• Solution :

– Exposing more control to applications

– Augment limited operating system interface

– Scheduler activation

– Application-Specific Handler

– SPIN

– Exokernel

Thread Based Concurrency

4

• Limits or bond thread with other ideas

– Resource container : application to associate scheduling

information with activity

– Scout : Mix thread with how to make ”path” through layers.

Bounded Thread Based Concurrency

5

• Better scalability

• Run event queues with loop

• Robust to load, little degradation beyond saturation

• Non-blocking I/O is required, but most of prior work

has event-processing threads that can block I/O

• Scheduling and ordering is key

• JAWS :

– Analyze Web server performance bottlenecks

– Studied trade-off between thread and event-driven concurrent

models

– Emphasizes adaptivity in service design

Event-Driven Concurrency

6

• To improve modularity and make easier scheduling and
ordering, make set of event queues

• Queue of two different components are managed
separately

• SEDA is in this category

• Click :
– Encapsulates packet processing stages into “Element”

– Targets specific applications.

– Single thread serves all event queues

– Relatively static schedule based on bounded processing time

• DDS
– Emulates asynchronous network and disk I/O interface with fixed size

of thread pools

– Software components are composed with event queue or upcalls

• Other examples:
– Work Crew(1989), TSS/360 Scanner(1968)

Structured Event Queue

7

• Sandstorm

• Made in Java

• To improve performance, fine tuning has done.

Implement

8

Stages

9

• Stage is made up of event queue, thread pool,

event handler.

• Resource controller allocates and schedules

system dynamically.

Dynamic Resource Controllers

10

• Controller that adjusts its resource allocation

– Thread pool controller adjusts the number of

– Batching controller adjusts the number of events

processed by each iteration

Asynchronous socket I/O

11

Composition

- 3 interfaces : asyncClientSocket, asnycServerSocket, asyncConnection

- 3 stages : Read stage, Listen stage, Write stage

- 2 queues : from user, from OS

Asynchronous socket I/O

12

Detail

- Queue

- Timeout mechanism을 이용하여 두 queue를 번갈아서비스

- Library 형태로구현되어동작 시 OS call을 부름
- UNIX poll과 /dev/poll 지원

- Randomize order

- 목적 : Fairness의 확보
- Reordering 이유 : OS는 보통 socket event를 고정된순서로제공

Asynchronous socket I/O

13

Detail

- Read stage

- I/O readiness event가 데이터를가진이용가능한소켓이있음을 알
려줄때읽음

- 각 socket request 당 16KB buffer 할당

- Java의 garbage collection을 deallocation 시이용

- Optional rate controller

- 기준 : moving average of incoming packet rate

- 방식 : event-processing loop의 delay

- 효과 : load-shedding

Asynchronous socket I/O

14

Detail

- Write stage

- 사용자로부터 request를받고서 OS가 socket이 이용가능하다할때
마다다음 packet을 씀

- ‘slow’ sockets 방지
- ‘slow’ sockets 원인

: 많은양의 outgoing packet이 특정 connection에 집중될때
queue의 length와 메모리 사용량이지나치게증가하는문제

- 해결 방법
: 임계를넘어가는연결을끊는방법이용

Asynchronous file I/O

15

Composition

- Blocking I/O와 bounded thread pool로 구성

- asyncFile object를 이용

- read, write, seek, stat, close 인터페이스 제공

How it works

- 한파일당하나의 thread 이용

- Thread pool controller가 concurrency수요에 따라동적으로 thread

제어

- 최대 20개까지 thread 수증가

Haboob

16

High-performance HTTP Server based on SEDA

- 10 stages

- 4 Asynchronous socket & disk I/O

- HttpParse & HttpRecv & HttpSend

- PageCache & CacheMiss

Haboob

17

Gnutella packet router

18

Gnutella
- Peer-to-peer network service

- Asynchronous socket I/O + 3stages(GnutellaServer, GnutellaRouter, GnutellaCatcher)

Conclusion

19

Main Contribution

- Stage를통해 Modularity를 확보하여 debugging이 쉽고 scalable하며 비
교적 application 작성이쉬운인터넷 서비스디자인을제시

- Controller를 통해 request간 fairness를 확보하여 predictable하게
response time이감소하는서비스 제공

Expectation

- Multi-machine 환경에서도추가적인 resource virtualization 없이서비스
를구현할수 있을것으로기대

- 다양한 scheduling policy가 개발 될것으로기대

Pro & Con

20

Pro
- Focused, application-specific admission control

- Exposure of the request stream

- Modularity and performance isolation

Con
- Application 개발자에게 여전히구현부담

- Queueing과 context switch의 overload가 크다

- Java의 garbage collection 기능은 high-performance 시스템에적
합하지않다

Cons.

21

System Support for Pervasive Applications
ROBERT GRIMM et al.

- SEDA의 2가지문제점언급

- Application을 Stage로구성해야하는어려움

- Stage간 event queueing 방식을 Application 개발자가 직접작성해야한다는 어려움

- one.world (integrated framework for building adaptable applications) 제안

Cons.

22

Why Events Are A Bad Idea

(for high-concurrency servers)
Rob von Behren, Jeremy Condit and Eric Brewer

- Thread 시스템의정당성논증

- 실제 Haboob과 Knot의비교를 통해 SEDA의문제점지적

- Haboob 성능저하추정원인

- Stage마다 thread pool 운용으로결국전체적으로 굉장히많은 context switch 존재

- 다수의 crossing과 queuing operation 존재

- Java의 garbage collection이성능저하를 일으킴

Subsequent Thesis

23

Adaptive Overload Control for Busy Internet Servers
Matt Welsh and David Culler

- 동적으로 Overload를조절하는 방법설명
- Metric : 90th-percentile response time

- 동작 :

- Monitor : Response time 측정
- Controller : admission control parameter 조절

- 논문에서는 Token Bucket의 token이 생성되는 rate를 조절하는 방식으로
동작하나다양한조절정책이 적용될수있음을언급

- Priority에 기반한 class-based service level agreements와 관련된 여러 정
책을적용할수있음을언급

Capriccio: Scalable Threads for Internet Services
Rob von Behren, Jeremy Condit, Feng Zhou, George C. Necula and Eric Brewer

- High Concurrency를지원하는 Thread 기반의아키텍처제시
- User-level thread 이용

Appendix : Think more

24

Agile Dynamic Provisioning of Multi-Tier Internet Applications
Bhuvan Urgaonkar, Prashant Shenoy, Abhishek Chandra, Pawan Goyal and Timothy Wood

- SEDA가 provisioning issue를고려하지않았음을언급
- Dynamic Provisioning을 Multi-tier 프로그램에 적용하면 heavy workload에서 좀 더 안정적인 서
비스환경제공을생각해볼수있음

A method for transparent admission control and request

scheduling in e-commerce web sites
Sameh Elnikety, Erich Nahum, John Tracey and Willy Zwaenepoel

- 간접적으로 overload를측정하는 SEDA와 달리스크립트당리소스의사용을측정
- 좀더정확하고세분화된조절을할수있음

Reference

25

Matt Welsh, David Culler, and Eric Brewer, “SEDA: An Architecture for Well-Conditioned, Scalable Internet Services,” SOSP, 2001.

Welsh, Matt and David E. Culler. “Adaptive Overload Control for Busy Internet Servers.” USENIX Symposium on Internet Technologies and

Systems (2003).

Behren, J. Robert von et al. “Why Events Are a Bad Idea (for High-Concurrency Servers).” HotOS (2003).

Grimm, Robert et al. “System support for pervasive applications.” ACM Trans. Comput. Syst. 22 (2003): 421-486.

Urgaonkar, Bhuvan et al. “Agile dynamic provisioning of multi-tier Internet applications.” TAAS 3 (2008): 1:1-1:39.

Elnikety, Sameh et al. “A method for transparent admission control and request scheduling in e-commerce web sites.” WWW (2004).
Behren, J. Robert von et al. “Capriccio: scalable threads for internet services.” SOSP(2003).

