.
ay
0

-

HE A=

Table of Contents

« Background Concepts
— Thread Based Concurrency
— Bounded Thread Based Concurrency
— Event-Driven Concurrency
— Structured Event Queue

 Implement
— Stages
— Dynamic Resource Controllers
— Asynchronous I/O
— Application and Test Evaluation

e Conclusion

Background Concepts

 User Level Threads vs Kernel Level Threads
— User level threads has better performance?!
— Flexibility
— Concurrency
— Virtualized processor

Thread Based Concurrency

« Special Aspects of Server on Threads.
— Application cannot control kernel priority: live lock, starvation

« Solution :
— EXxposing more control to applications
— Augment limited operating system interface
— Scheduler activation
— Application-Specific Handler
— SPIN
— Exokernel

Bounded Thread Based Concurrency

« Limits or bond thread with other ideas

— Resource container : application to associate scheduling
Information with activity

— Scout : Mix thread with how to make "path” through layers.

Event-Driven Concurrency

Better scalability
Run event queues with loop
Robust to load, little degradation beyond saturation

Non-blocking I/O is required, but most of prior work
has event-processing threads that can block 1/O

Scheduling and ordering is key

JAWS :

— Analyze Web server performance bottlenecks

— Studied trade-off between thread and event-driven concurrent
models

— Emphasizes adaptivity in service design

\ ¥ LAB

Structured Event Queue

To improve modularity and make easier scheduling and
ordering, make set of event queues

Queue of two different components are managed
separately

SEDA is in this category

Click :

— Encapsulates packet processing stages into “Element”

— Targets specific applications.

— Single thread serves all event queues

— Relatively static schedule based on bounded processing time

DDS

— Emulates asynchronous network and disk I/O interface with fixed size
of thread pools

— Software components are composed with event queue or upcalls

Other examples:

— Work Crew(1989), TSS/360 Scanner(1968)

7

Implement

Sandstorm

Made in Java

« To improve performance, fine tuning has done.

Stage is made up of event queue, thread pool,
event handler.

Resource controller allocates and schedules
system dynamically.

Outgoing
Events

Event Queue

Event Handler

Thread Pool

s .
2%55\

Controller

. E%%%%S
e E???ég

Dynamic Resource Controllers

« Controller that adjusts its resource allocation
— Thread pool controller adjusts the number of

— Batching controller adjusts the number of events
processed by each iteration

d 1]

Other Stages

| (Event Handler
T1T] 1171 111
eoeerg ?§§% Thzzd% §ooI
Length Thread Pool _
. Adjust 1 |||||
Adjust Batching
Size Factor Observe

Rate
Threshold Running Avg

(a) Thread pool controller (b) Batching controller

Asynchronous socket I/O

Composition

2 queues : from user, from OS

Application

_—/F

|asyncCIientSucket| | asyncConnection |

3 interfaces : asyncClientSocket, asnycServerSocket, asyncConnection
3 stages : Read stage, Listen stage, Write stage

| asyncServersSocket |

T Write ready

QOperating System

11

Asynchronous socket I/O

Detall
- Queue
- Timeout mechanism= 0| &3} & queueE H&ZO} MH|A
- Library HE 2 LHE|0] SE Al OScallE £ &

- UNIX pollZ} /dev/poll X|-&
- Randomize order
- 23X : Fairness?| &t
- Reordering O : OS= £& socket eventE 1HE =AME XS

Asynchronous socket I/O

Detall

- Read stage
- I/O readiness event’/f O|O|E{ & 7}%I 0| & 7ts¢t &70| /S22 &
HE M =2
- ZF socket request = 16KB buffer 2H&

- Java®@| garbage collection deallocation A| O|-&

- Optional rate controller
- 7|& : moving average of incoming packet rate
- BIAl - event-processing loop2| delay
- RJ_f - load-shedding

Asynchronous socket I/O

Detall

- Write stage

- A EXIEEH requestE 21 A 0S7} socketO| 0|2 7hsoiCt g Of
OtCh CHS packets &

- ‘slow’ sockets 2IX|
- ‘slow’ sockets & 9!
: B2 Q9| outgoing packetO] £ connection0f & & [
queuel| length®} T 22| AFR 20| X|LIX| A S718l= 2K
off 2 &
AE 07 = A&

[0
A
rr
o
IE
o
[0

Asynchronous file /O

Composition
- Blocking I/0O2} bounded thread poolZ T3
- asyncFile objectE 0|&

- read, write, seek, stat, close Q/E{I{O| A H|-&

How it works
. SF Ot BFLEO| thread O| 2

- Thread pool controller’?| concurrency==2.0] L}2} X 2 £ thread

X o
- X|CH 207H77HK] thread 2= 7+

High-performance HTTP Server based on SEDA

- 10 stages
- 4 Asynchronous socket & disk I/O
- HttpParse & HttpRecv & HttpSend
- PageCache & CacheMiss

file data
Socket isten CacheMizs e file 110

FELJLIEST
Tlﬁ L m— Y F—" scacte ,{{L'ﬁ_" w5 D
Socket read \\‘\“ﬂ—- check s Socket wiite
read ’ﬁ::[' H"“-n‘_ send — write
(1 — e I

Figure 5: Staged event-driven (SEDA) HTTP server: This is a structural representation of the SEDA-based Web server, described in detoil in Section 5.1. The
application is composed a5 a set of stages separated by queues. Edges represent the flow of events between stoges. Eoch stage can be independently managed, and
stages can be run in sequence or in parallel, or @ combination of the twa. The use of event queves allows each stage o be individually lood-conditioned, for exampile,
by thresholding its event quene. For simplicity, some event paths and stages have been elided from this figure.

\ ¥ LAB

Throughput, MBit/sec

240
220
200
180
160
140
120

----EI’--- Apache " _
| el Flash 08 b j]
=—&— Haboob)
0.8 -
:, Apache
0.9 E 08 /£
@ = / Flash
L vood 088 E 2 05
Faimess & 4 / Haboob
: 0.84 g 0.3 / / .
dpez = / /
e i 0.2
08 / / /
J 1 i i i '] i 076 U //_-n_-u--n_.- L " L L Lil i i
1 2 4 16 3z 64 128 256 512 1024 10 100 1000 10000 100000
Mumber of clients Response time, msec
(a) Throughput vs. number of clients (b) Cumulative distribution of response time for 1024 clients
236 clients 1024 clients

Server Throughput | RT mean RTmax Fairness Throughput | RT mean RTmax Fairness

Apache 17336 Mbps | 14391 ms 27953 ms 0.98 17309 Mbps | 47547 ms 93691 ms 0.80

Flash 18083 Mbps | 14139 ms 10803 ms 0.99 17265 Mbps | 66332 ms 37388 ms 0.99

Haboob || C08.09Mbps | 112.44ms 1220 ms (0.99)]] 201.43 Mbps | 347.23 ms 3886 ms (0.98)

Gnutella packet router

Gnutella

- Peer-to-peer network service

- Asynchronous socket I/O + 3stages(GnutellaServer, GnutellaRouter, GnutellaCatcher)

3455.0
G442.7

™~ packet type " packet type
Ping Ping
Query Query
B0 | 0
E ®F g @ :
g g g g 5
& o a8 = - =
Ser B 2 sero8 3] s
& & o o
-
3 - =
Wl o Wl = 3 e
= = g
0 0
a0 200 400 1000 100 200 400 1000
Offered load (packets/sec) Offered load (packets/sec)
(a) Using single thread (b) Using thread pool controller
18

Ciueus length

anI‘IEIéRI!.I‘I:EI'rEEEE ciueue Ie'nglh Jlam—

A . f / TR ToF B0 AT
li] 50 100 180 200 250 300 350 400 450 500

Tirne (100 ms intzrvals)

(¢) Queue length profile

\ ¥ LAB

Conclusion

Main Contribution

- StageE Sl ModularityE 22510 debugging©| £ 11 scalabledtH Hi
w A application 2f-40| [QIE S MH|A C|XQlE E) SN

- ControllerE £3l request?t fairnessE 2= 350 predictabledtA
response timeO| Z23t= A H|A K&

Expectation

- ulti-machine 2FE 0| M X =718 Ol resource virtualization $10] AH|A
7o = A2 Ao 2 7|0

|,'_ uu =

25t scheduling policy?t 7HE & A2 2 7|0}

- Focused, application-specific admission control

- Exposure of the request stream

- Modularity and performance isolation

- Application ZHZ X0 A 6MS| L+ B2
- Queueingdt context switch?2| overload”} 2L}

- JavaZ| garbage collection 7|2 high-performance A| A &0 A
2t SHA| RECE

20

\ ¥ LAB

SEDAZ2| 27tX| 2 XE ¢a
Applications StageZ T30} Sl= 0243

Stage?t event queueing

System Support for Pervasive Applications

ROBERT GRIMM et al.

= Application 7 X7t 2 ZHd5

Llser
Space

one.world (integrated framework for building adaptable applications) X| ¢t

System
Senices

Services

Foundatian

Application Application Application
System
Libraras Utilitias
Migration Discovery Tuple Storage
- Remote _
Checkpointing Events Query Engineg
Azynchranous .
Evnts Environmenis Tuples
Wirtual
Machineg
Charnge Compasiian Sharing

21

Why Events Are A Bad Idea
(for high-concurrency servers)

- Thread A|[2] &Y =

ol

- AX| HaboobX} Knot2| H| W & £l SEDAS| 22X ™ X|H

- Haboob d& Aol =H &9l

- StageO}Ct thread pool 2822 A= MM X2

- Ct==2| crossingZt queuing operation = i

- JavaQ| garbage collection0| & XN3IE Z2Z

w0

Rob von Behren, Jeremy Condit and Eric Brewer

XS B2 context switch =AY

anq |- tnet—C [favarcennections)

Knot-A [favoraceept] ~ =777
TE Hgbeob = ———

500 -
500

400 -

Mbits f second

Elod) o

200 -

100 =

a

1 4 1é& . 256 1024 A0

Concurrent Clients

22

16334 65536

Subsequent Thesis

Adaptive Overload Control for Busy Internet Servers
Matt Welsh and David Culler

- SHC2Z OverloadE Z=E5l= 48 29
- Metric : 90™-percentile response time Token

- =X Buckets R(_ers_"%%r;se
o =5y —=\3/nm]
- Monitor : Response time 5% —\A// SEEWN %%?
- Controller : admission control parameter Z=&

|

- =20 A= Token Bucket2| tokenO| M dE|= rateE THSH= WAOZ Sorirdliar
e O o Y
SAFSILE CHQESH XA KA O0| MK E A 0| 01 ? . \ ik o
- Priority0fl 7|83} class-based service level agreements@t 2t =l o larget target
S MQSF A 0|9 oo
12 1To=2 T MO=2 --d

Capriccio: Scalable Threads for Internet Services

Rob von Behren, Jeremy Condit, Feng Zhou, George C. Necula and Eric Brewer

- High ConcurrencyE X| ¥ St= Thread 7| 22| OF7|EIX| K| Al
- User-level thread 0| &

23

\ ¥ LAB

Appendix : Think more

Agile Dynamic Provisioning of Multi-Tier Internet Applications
Bhuvan Urgaonkar, Prashant Shenoy, Abhishek Chandra, Pawan Goyal and Timothy Wood

- SEDA7Z} provisioning issueE 1 2{5tX| RAUZ 2 AZ

- Dynamic Provisioning= Multi-tier == 1280|| X &35} heavy workloadd|A] & O HE X Q1 A
H{A SHE HI2 ddsiE = US

A method for transparent admission control and request

scheduling in e-commerce web sites
Sameh Elnikety, Erich Nahum, John Tracey and Willy Zwaenepoel

S5 SEDAQ} 22| AQYETY 2|22 ABES B

)
, A
il
A |0
Hu
(@]
<
@
o
Q
o
i

24

Reference

Matt Welsh, David Culler, and Eric Brewer, “SEDA: An Architecture for Well-Conditioned, Scalable Internet Services,” SOSP, 2001.

Welsh, Matt and David E. Culler. “Adaptive Overload Control for Busy Internet Servers.” USENIX Symposium on Internet Technologies and
Systems (2003).

Behren, J. Robert von et al. “Why Events Are a Bad Idea (for High-Concurrency Servers).” HotOS (2003).

Grimm, Robert et al. “System support for pervasive applications.” ACM Trans. Comput. Syst. 22 (2003): 421-486.

Urgaonkar, Bhuvan et al. “Agile dynamic provisioning of multi-tier Internet applications.” TAAS 3 (2008): 1:1-1:39.

Elnikety, Sameh et al. “A method for transparent admission control and request scheduling in e-commerce web sites.” WWW (2004).
Behren, J. Robert von et al. “Capriccio: scalable threads for internet services.” SOSP(2003).

25

