
A Note on

Computer Systems

Research

Jin-Soo Kim
(jinsoo.kim@snu.ac.kr)

Systems Software &
Architecture Lab.

Seoul National University

Spring 2019

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 2

▪ What is computer systems research?

• Dealing with everything between hardware and applications

▪ The capstone of all the computer science principles:

• Operating systems

• Computer architecture

• Computer networks

• Compilers

• Programming languages

• Databases

• Security

• Data structures and algorithms, …

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 3

▪ Parallel and distributed systems

▪ Embedded systems

▪ Database management systems

▪ Networked systems

▪ Storage systems

▪ Cloud computing

▪ Mobile computing

▪ Ubiquitous or pervasive computing, IoT

▪ CPS (Cyber-Physical Systems)

▪ Blockchain

▪ Machine learning

▪ … and you name it!

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 4

▪ Designing computer systems is very different from designing an

algorithm

▪ The external requirement is less precisely defined, more complex, and

more subject to change

▪ The system has much more internal structure, hence many internal

interfaces

▪ The measure of success is much less clear

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 5

▪ Large system is difficult to understand or build

▪ There are not necessarily any right answers

• There is a sea of possibilities

• Unclear about how one choice will limit his freedom to make other choices, or

affect the size and performance of the entire system

▪ No one can tell you with certainty that you are right

• The best way we can do is to avoid choosing a terrible way

• The art of trade-offs

▪ You are never done

• The last 10% to perfection typically consumes 80% of the effort

• You don’t know if the resulting system is perfect or not

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 6

Problem

Design

Prototyping

Measurement

Analysis

Optimization

Papers, Patents, $$$

benchmarks
methodology

Idea

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 7

▪ Identify a problem/phenomenon in the current systems

• Physical memories are small

• CPU is getting faster but I/O is NOT that much

• Number of cores is increasing, …

▪ The world is changing (always):

• New services: WWW, Web services, P2P, Grid, MMORPG, Cloud, XaaS, …

• New applications: DB, Java, Games, Big Data, Machine learning, Blockchain, …

• New environments: Wireless, Mobile, Ad-hoc, Battery-powered, VR, AR, 5G, …

• New architecture/devices: Multi-cores, NVDIMM, Flash, RDMA, GPU, FPGA, …

Add a functionality
Enhance performance, reliability, or energy-efficiency
Develop a new system

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 8

▪ Have a broad spectrum of knowledge

• Read widely

• Participate in seminars

• Don’t stick to your *field* (Bad Career Move #1)

▪ Know the state-of-the-art technology

• See what other people are doing

▪ Stay tuned for emerging technologies and predict their implications

▪ Be a team player; discuss with others

▪ There is no free lunch

• Practice solving problems and building systems whenever you have a chance

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 9

▪ Functionality

• Does it work?

▪ Speed

• Is it fast enough?

▪ Fault-tolerance

• Does it keep working?

Source: B. Lampson, “Hints for Computer Systems Design,” SOSP, 1983.

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 10
Source: B. Lampson, “Hints for Computer Systems Design,” SOSP, 1983.

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 11

▪ Policy

• What should be done?

• Policy decisions must be made for all resource allocation and scheduling problems

• e.g. CPU scheduling: scheduling algorithm, quantum size, priority, etc.

▪ Mechanism

• How to do something?

• The tool for implementing a set of policies

• e.g. CPU scheduling: dispatcher for low-level context switching, priority queues, etc.

• e.g. X-windows implement “mechanism, not policy”

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 12

▪ A key principle in operating system design

▪ Policies are likely to change depending on workloads, and also across

places or over time

• Each change in policy would require a change in the underlying mechanism

▪ A general mechanism, separated from policy, is more desirable

• A change in policy would then require redefinition of only certain parameters of

the system instead of resulting in a change in the mechanism

• It is possible to experiment with new policy without breaking mechanisms

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 13

▪ Allows to build a more modular system

• Only need to port mechanisms

▪ Enables extensible systems

• Microkernel only implements a basic set of policy free primitives

• More advanced mechanisms and policies are added via user-created kernel modules

or via user programs themselves

▪ One can design a kernel that allows processes to download their ideal

polices directly into the OS

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 14

▪ Ask why you are doing this

• Define your problem, goals, and metrics first

• And then, ask Who? When? What? How?

▪ List the expected benefits and costs

• BEFORE any experiments

• Determine the graphs you would like to see

▪ Think of any other way you can do better

• Implementations are expensive; take enough time on design

▪ Again, be a team player; review your design with others

• Two heads are better than one

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 15

▪ Use analytical investigations

• Probably too many assumptions

• Need to inject real parameters… How to obtain them?

▪ Use simulations

• OK if you use the well-known simulator, or open-source your simulator

• Need to prove your model is correct; run sanity checking experiments to which

you know the answer

▪ Gather traces from real systems

• Traces are much easier to deal with

▪ Instrument or modify existing systems: Hard…

▪ Build prototypes: Harder…

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 16

▪ Use your intuition to ask questions, not answer them

▪ What’s your metric?

Hypothesis
Measure
Measure
Measure, again
Compare results against others results
Prove/Disprove hypothesis
Modify or suggest new hypothesis
Document for others to reproduce results

Sequence of experiments
Change 1 parameter/experiment

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 17

▪ Abstract

• Introduce area

• State problem

• Summarize conclusions (be quantitative)

▪ Introduction

• Complete description of problem

• State more detailed results

• Short summary of what’s have been done

• Roadmap of the paper

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 18

▪ Previous work

• Do a thorough literature search (from 60’s)

• Neither more nor less list of references

• Relate your work to existing work

• Demonstrate how your work fits in to the grand scheme of things

▪ Design & Implementation

• Do describe your research

• Be thorough, but concise

• Clarify why you made such design decisions

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 19

▪ Evaluation

• Describe experimental setup (both hardware and software)

• Explain your methodologies

• Explain expected results, reasons for such expectation

• Explain surprising difference

• Visual presentation of data

▪ Conclusions

• State results again

• State significance of results

• Tell people what they should have learned

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 20

▪ Future work

• What questions still remain

• What new questions have arisen

• How can your work be extended

▪ General tips

• Spell check: very important

• Grammar check: very difficult for us, but try

• Style check: passive voice, plural, he/she, …

• Consistency in figures, graphs, references, etc.

• As research is going on, start writing and write often: very important

• Let the paper sit for a few days before proofreading

• Read many papers!

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 21

▪ Importance of a problem

▪ Soundness of assumptions

▪ Originality and novelty of ideas

▪ Availability of real implementations

▪ Exploration of alternative design choices

▪ Value of lessons learned

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 22

▪ Science

• Discover truth by scientific methods

• Identify the effects and limitations of computer artifacts on the physical world

▪ Engineering

• Achieve a solution that works for a particular problem

• Develop “good enough” heuristics

▪ Art

• Elegance, beauty, and simplicity

• Make complex ideas more palatable or more comprehensible

Source: A. Brown et al., “The Many Faces of Systems Research – And How to Evaluate Them,” HotOS, 2005.

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 23

▪ B. W. Lampson, “Hints for Computer Systems Design,” SOSP, 1983.

▪ J. H. Saltzer, D. P. Reed, and D. D. Clark, “End-to-end Arguments in Systems Design”,

ICDCS, 1981.

▪ R. Levin and D. D. Redell, “An Evaluation of the Ninth SOSP Submissions or How

(and How Not) to Write a Good Systems Paper,” ACM Operating Systems Review,

1983.

▪ D. A. Patterson, “How to Have a Bad Career in Research/Academia,” CRA Academic

Careers Workshop, 2002.

▪ A. B. Brown, A. Chanda, R. Farrow, A. Fedorova, P. Maniatis, and M. L. Scott, “The Many

Faces of Systems Research – And How to Evaluate Them,” HotOS, 2005.

