
Distributed File Systems

Jin-Soo Kim
(jinsoo.kim@snu.ac.kr)

Systems Software &
Architecture Lab.

Seoul National University

Spring 2019

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 2

▪ Direct-Attached Storage

• Simple to deploy

• Lower initial cost

Network
RAID

SATA
SCSI
SAS
FC, ...

HTTP server

File server

• Sharing data?

• Load balancing?

• Scalability?

• Fault tolerance?

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 3

▪ Network-Attached Storage

• File-level data sharing

• Easy to install & deploy

• Heterogeneous systems support

• Static data partitioning

• Scalability?

• Automatic load balancing?

• Transparent migration?

Clients

Network

/nas1/bill

/nas2

/nas1/steve

NAS2

NAS1

NAS Protocol

NFS, SMB/CIFS, ...

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 4

▪ Storage Area Network

• Block-level data sharing

• High performance

• High availability

• Sharing files?

• Cost?

• Management complexity?

• Interoperability?

Block Storage

Storage
Area

Network

Block 0-1024

Block 1025-2048
SAN Protocol

Fibre Channel, iSCSI, NVMe-oF, ...

File/DBMS Servers

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 5

▪ NAS Head

• A NAS with no on-board storage (connected to a SAN)

• File system operations → Block device operations

• Cache file contents

NAS HeadsClients Block Storage

SAN
Protocol

NAS
Protocol

Network

Storage
Area

Network

File
/foo/bar

Block
16-32

Andrew File System (AFS)

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 7

▪ A distributed filesystem for Andrew, a distributed computing

environment developed at CMU (1983~)

▪ Transarc Corp. founded to commercialize AFS (1989)

▪ Transarc becomes subsidiary of IBM (1998)

▪ IBM releases OpenAFS as open source (http://www.openafs.org)

▪ Originally for campus computing network with up to at least 7000

workstations

▪ In 1991, approximately 800 workstations are serviced by ~ 40 AFS

servers at CMU

http://www.openafs.org/

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 8

▪ Transparent access to remote shared files for UNIX programs

• Compatibility with UNIX at the system call level

• No modification or recompilation of UNIX programs

▪ Common namespace from all workstations

▪ Client-server model

▪ Scalability

▪ User-level implementation

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 9

UNIX kernel

User
program

Venus

UNIX kernel

User
program

Venus

Vice

UNIX kernel

UNIX kernel

User
program

Venus

Vice

UNIX kernel

Workstations Servers

Network

Source: G. Coulouris et al., Distributed Systems Concepts and Design, 5th Ed., 2012

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 10

▪ Volume-based for easy of location and movement

• A partial subtree of the shared namespace

• Volume Location Database on each server

▪ Whole-file serving

▪ Whole-file caching

▪ AFS session semantics (or close-to-open semantics)

• Once a file is closed, the changes made to it are visible to new opens anywhere on

the network

• No communication during reads/writes

▪ Callbacks to maintain cache coherency

▪ Replication of read-only volumes

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 11

▪ POSIX compliance

▪ Metadata management (File metadata, namespace, location)

▪ Consistency models

▪ Maintaining consistency against component failures (disk, server, network)

▪ Presence of SPOF (single point of failure)

▪ Scalability

▪ Automatic load balancing

▪ Compression, Deduplication, Encryption, …

▪ Online node addition/removal

▪ Ease-of-maintenance

The File System
(S. Ghemawat et al., SOSP, 2003)

Some of slides are borrowed from the authors’ presentation.

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 13

▪ Typical first year for a new cluster:
• ~0.5 overheating (power down most machines in < 5 mins, ~1-2 days to recover)

• ~1 PDU failure (~500-1000 machines suddenly disappear, ~6 hours to come back)

• ~1 rack-move (plenty of warning, ~500-1000 machines powered down, ~6 hours)

• ~1 network rewiring (rolling ~5% of machines down over 2-day span)

• ~20 rack failures (40-80 machines instantly disappear, 1-6 hours to get back)

• ~5 racks go wonky (40-80 machines see 50% packetloss)

• ~8 network maintenances (4 might cause ~30-minute random connectivity losses)

• ~12 router reloads (takes out DNS and external vips for a couple minutes)

• ~3 router failures (have to immediately pull traffic for an hour)

• ~dozens of minor 30-second blips for dns

• ~1000 individual machine failures

• ~thousands of hard drive failures

• slow disks, bad memory, misconfigured machines, flaky machines, etc.

• Long distance links: wild dogs, sharks, dead horses, drunken hunters, etc.
Source: J. Dean, “Designs, Lessons and Advice from Building Large Distributed Systems,” LADIS Keynote, 2009.

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 14

▪ Motivation

• Manipulate large (TBs) sets of data

• Large numbers of machines with a modest amount (~ 1TB) of storage

• Component failures are the norm

▪ Goal

• Scalable, high performance, fault tolerant distributed filesystem

• RAIS (Redundant Array of Inexpensive Servers) ☺

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 15

▪ Many existing filesystems: AFS, xFS, InterMezzo, Lustre, GPFS, NFS, Swift,

etc.

▪ We build on the lessons of the past

▪ None designed for our failure model

▪ Few scale as highly or dynamically

▪ Lack special primitives for large distributed computation

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 16

▪ Component failures are the norm rather than the exception

• The system is built from many inexpensive commodity components

• Requires constant monitoring, error detection, fault tolerance, and autonomic recovery

▪ Files are huge by traditional standards: Multi-GB files are common

▪ Applications use a few specific access patterns

• Large streaming reads / small random reads

• Append to large files

▪ Co-designing the applications and the filesystem API increase the flexibility

• APIs similar to POSIX + atomic append, snapshot

▪ High sustained bandwidth is more important than low latency

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 17

▪ Master

• Manages metadata: Namespace, access control information, the mapping from files

to chunks, replica locations, etc.

• All the metadata is kept in memory

• Controls leases, placement, replication, migration, etc.

• Not involved in data transfer

▪ Chunkservers

• Store “chunks” of data

• Built on local Linux filesystem (no knowledge of GFS filesystem structure)

• Periodically communicate with the master using HeartBeats

▪ Clients

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 18

▪ Files are divided into fixed-size chunks

• The chunk size is 64MB

• 64-bit chunk handle is assigned by the master

• Lazy space allocation to avoid internal fragmentation

• Chunkservers store chunks on local disks as Linux files

• By default, three replicas are maintained for reliability

▪ Why a large chunk size?

• Reduces the communication with the master

• Reduces network overhead by keeping a persistent TCP connection to chunkserver

• Reduces the metadata size

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 19

Application

GFS client

Master

chunkserver x

chunkserver y

chunkserver z

1. read (filename, offset)

2. (filename,
chunk id)? 3. (chunk handle,

chunk locations)

4. cache info.
(filename, chunk id,
chunk handle,
chunk locations)

5. contact closest
chunkserver:
read (chunk handle,

byte range)

6. data

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 20

Application

GFS client

Master

chunkserver x

chunkserver y

1. write (filename, offset, data, size)

2. (filename,
chunk id)?

4. (chunk handle,
primary (y),
chunk locations)

5. cache info.
(filename,
chunk id,
chunk handle,
primary,
chunk locations)

6. send data to
closest chunkserver

3. choose a primary,
if necessary.

7. pipeline data to
closest chunkserver

8. write request
to the primary

9. The primary serializes
all the mutations and
applies them.

chunkserver z

10. The primary forwards
the write request to
all secondary replicas.

12. return error
code, if any.

11. Secondary replicas
apply mutations in
the same order and
ack to the primary.

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 21

Application

GFS client

Master

chunkserver x

chunkserver y

1. append (filename, data, size)

2. (filename,
last chunk id)? 4. (chunk handle,

primary (y),
chunk locations)

5. cache info.
(filename,
chunk id,
chunk handle,
primary,
chunk locations)

6. send data to
closest chunkserver

3. choose a primary,
if necessary.

7. pipeline data to
closest chunkserver

8. append request
to the primary

9. Exceed the chunk size!
Pad the chunk.

chunkserver z

10. The primary asks
all the secondaries
to pad the chunk to
the maximum size.

12. Ask the client
to retry on the
next chunk

11. Secondary replicas
ack to the primary.

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 22

Application

GFS client

Master

chunkserver x

chunkserver y

1. append (filename, data, size)

2. (filename,
last chunk id)? 4. (chunk handle,

primary (y),
chunk locations)

5. cache info.
(filename,
chunk id,
chunk handle,
primary,
chunk locations)

6. send data to
closest chunkserver

3. choose a primary,
if necessary.

7. pipeline data to
closest chunkserver

8. append request
to the primary

9. Append the data to
its replica.

chunkserver z

10. The primary asks
all the secondaries
to append the data
at the same offset.

12. Return offset

11. Secondary replicas
ack to the primary.

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 23

▪ Concurrent file namespace mutations

• Each mutation is atomic and handled exclusively by the master

• Operation log defines a global total order

▪ Concurrent writes

• The data may be broken into multiple write operations

• The region may end up containing data fragments from multiple clients

▪ Concurrent RecordAppends

• GFS appends data at least once atomically at an offset of GFS’s choosing

• Replicas of the same chunk may contain different data possibly including duplicates

of the same record in whole or in part

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 24

▪ A region is consistent if all clients will always see

the same data, regardless of which replicas they

read from

▪ A region is defined if it is consistent and clients will

see what the mutation writes in its entirety

Write Record Append

Serial success defined
defined

interspersed with
inconsistent

Concurrent
successes

consistent
but undefined

Failure inconsistent

primary

replica

inconsistent

primary

replica

defined

primary

replica

consistent

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 25

▪ Choose chunkservers with below-average disk space utilization

• Equalize disk utilization

▪ Limit the number of “recent” creations on each chunkserver

• Heavy write traffic will follow soon

▪ Spread replicas across racks

• Maximize data reliability and availability

• Maximize network bandwidth utilization

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 26

▪ The master re-replicate a chunk when:

• A chunkserver becomes unavailable

• A chunkserver reports its replica may be corrupted

• One of disks is disabled because of errors

• The replication goal is increased

▪ Minimize application disruption and data loss

• More replicas missing → priority boost

• Recently deleted files → priority decrease

• Client blocking on a write → large priority boost

▪ Master directs copying of data from an existing replica

▪ Keep cloning traffic from overwhelming client traffic

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 27

▪ The master periodically examines the current replica distribution

▪ Replicas are moved for better disk space and load balancing

▪ A new chunkserver is gradually filled up

▪ Prefer to remove chunks on chunkservers with below-average free

space

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 28

▪ Garbages: any replica not known to the master

• Deleted files are temporarily kept for 3 days

• Orphaned chunks

▪ Why not eager deletion?

• Simple and reliable in a large-scale distributed system where component failures

are common

• Storage reclamation can be merged into the regular background activities for the

master

• The delay provides a safety net against accidental, irreversible deletion

▪ Users may control the policy especially when the storage is tight

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 29

▪ What if a chunkserver misses mutations?

▪ Chunk version number

• Maintained by the master for each chunk

• Increased whenever the master grants a new lease

• Recorded in the persistent state by the master and all replicas

▪ Stale replicas can be detected if the chunk version number is less than

the master’s

▪ The master removes stale replicas in its regular garbage collection

▪ The master also informs clients of the chunk version number

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 30

▪ Fast recovery

• The master and chunkservers restart in seconds

▪ Chunk replication

• Different replication levels for different parts of the namespace

• More complicated redundancy schemes may be possible

– Mostly appends and reads instead of small random writes

▪ Master replication

• The operation log and checkpoints are replicated

• The master can be instantly restarted or replaced

• Shadow master provide read-only access even when the primary master is down

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 31

▪ Disk failures cause data corruption

▪ 32-bit checksum for each 64KB block

▪ On checksum failure:

• The chunkserver reports the mismatch to the master

• The client retries other replicas

• The master clones the chunk from another replica

• The corrupted chunk is deleted

▪ Chunkservers can verify the checksum during idle periods

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 32

▪ 10+ clusters

▪ Filesystem clusters up to 1000+ machines

▪ Pools of 1000+ clients

▪ 350+ TB filesystems

▪ 500+ MB/s read/write load

▪ Operational in the presence of frequent hardware failures

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 33

▪ 200+ clusters

▪ Many clusters of 1000s of machines

▪ Pools of 1000s of clients

▪ 4+ PB filesystems

▪ 40 GB/s read/write load

▪ Operational in the presence of frequent hardware failures

Source: J. Dean, “Designs, Lessons and Advice from Building Large Distributed Systems,” LADIS Keynote, 2009.

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 34

▪ Inexpensive commodity components can be the basis of a large-scale

reliable system

▪ Adjusting the API, e.g., RecordAppend, can enable large distributed

applications

▪ It solves the problem for our initial target applications, but …

▪ Build something fault tolerant and people will find more uses than you

expect

4190.568 Advanced Operating Systems | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 35

▪ Workload changes

• Hundreds of TBs →Tens of PBs (100x increase)

• Batch-oriented workload (crawling and indexing) → Interactive applications (Gmail, …)

• Many files < 64MB

▪ Colossus: Google’s next-generation cluster-level file system

• Distributed master architecture

• Use BigTable for metadata storage

• 100M files per master, hundreds of masters

• 1MB chunk size

• Data typically written using Reed-Solomon (1.5x)

