
Introduction to

Computer Architecture

Jin-Soo Kim
(jinsoo.kim@snu.ac.kr)

Systems Software &
Architecture Lab.

Seoul National University

Fall 2022

Chap. 1.1 – 1.5, 1.7 – 1.8

4190.308: Computer Architecture | Fall 2022 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 2

4190.308: Computer Architecture | Fall 2022 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 3

▪ Personal computers

• General purpose, variety of software

• Subject to cost/performance

tradeoff

▪ Server computers

• Network-based

• Range from small servers to large

data centers

• High performance, capacity, reliability

▪ Supercomputers

• High-end scientific and engineering

calculations

• Highest capability but represent a small

fraction of the overall computer market

▪ Embedded computers

• Hidden as components of systems

• Stringent power/performance/cost

constraints

4190.308: Computer Architecture | Fall 2022 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 4

A computer is a machine.

4190.308: Computer Architecture | Fall 2022 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 5

▪ By John von Neumann, 1945

CPU

Processing
unit

Memory

Storage
unit

Byte addressable array
Code + data (user program, OS)
Stack to support procedures

Address

Data

Instruction

Data movement
Arithmetic & logical ops
Control transfer

4190.308: Computer Architecture | Fall 2022 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 6

▪ CPU: Control + Datapath

▪ Memory

▪ I/Os

• GPUs

• User-interface devices:

Display, keyboard, mouse, sound, …

• Storage devices:

HDD, SSD, CD/DVD, …

• Network adapters:

Ethernet, 3G/4G/5G, WiFi, Bluetooth, …

▪ Same components for all kinds of computer

4190.308: Computer Architecture | Fall 2022 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 7

SSDs

DRAMs

CPUMotherboard

Fans

GPU

Power supply

Speaker (Right)Speaker (Left)

Display

Source: https://www.ifixit.com/Teardown/iMac+Pro+Teardown/101807

4190.308: Computer Architecture | Fall 2022 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 8
Source: David Keyes, “Algorithmic Adaptations to Extreme Scale Computing,” ATPESC, 2018.

104 cabinets
(76 computes,
8 switches,
20 disks)

9298 cores

150m2

4190.308: Computer Architecture | Fall 2022 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 9

▪ "The number of transistors

incorporated in a chip will

approximately double every 24

months"
(Gordon Moore, Intel Co-founder, 1965)

▪ Makes novel applications feasible

• WWW, search engines

• Smartphones, VR/AR

• AI, Self-driving cars

• Human genome project, …

▪ Computers are pervasive

4190.308: Computer Architecture | Fall 2022 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 10

▪ NAND logic built with CMOS technology

Source: https://en.wikipedia.org/wiki/NAND_gate

http://upload.wikimedia.org/wikipedia/commons/e/e2/CMOS_NAND.svg
http://upload.wikimedia.org/wikipedia/commons/8/8f/CMOS_NAND_Layout.svg

4190.308: Computer Architecture | Fall 2022 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 11

Sand

Purified silicon ingot

Yield: proportion of working dies per wafer

4190.308: Computer Architecture | Fall 2022 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 12

▪ 12-inch (300mm) wafer, 506 chips, 10nm technology

▪ Each chip is 11.4 x 10.7 mm

• Wafer cost and area are fixed

• Defect rate determined by manufacturing process

• Die area determined by architecture and circuit design

𝑪𝒐𝒔𝒕 𝒑𝒆𝒓 𝒅𝒊𝒆 =
𝑪𝒐𝒔𝒕 𝒑𝒆𝒓 𝒘𝒂𝒇𝒆𝒓

𝑫𝒊𝒆𝒔 𝒑𝒆𝒓 𝒘𝒂𝒇𝒆𝒓 × 𝒀𝒊𝒆𝒍𝒅

𝑫𝒊𝒆𝒔 𝒑𝒆𝒓 𝒘𝒂𝒇𝒆𝒓 ≈ Τ𝑾𝒂𝒇𝒆𝒓 𝒂𝒓𝒆𝒂 𝑫𝒊𝒆 𝒂𝒓𝒆𝒂

𝒀𝒊𝒆𝒍𝒅 =
𝟏

𝟏 + 𝑫𝒆𝒇𝒆𝒄𝒕𝒔 𝒑𝒆𝒓 𝒂𝒓𝒆𝒂 ×
𝑫𝒊𝒆 𝒂𝒓𝒆𝒂

𝟐

𝟐

4190.308: Computer Architecture | Fall 2022 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 13

▪ CPU

• Logic capacity: ~ 30% / year

• Clock rate: ~ 20% / year

▪ Memory

• DRAM capacity: ~ 60% / year

(4x every 3 years)

• DRAM speed: ~ 10% / year

Year Technology
Relative
performance/cost

1951 Vacuum tube 1

1965 Transistor 35

1975 Integrated circuit (IC) 900

1995 Very large scale IC (VLSI) 2,400,000

2013 Ultra large scale IC 250,000,000,000

4190.308: Computer Architecture | Fall 2022 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 14

▪ In CMOS IC technology,

▪ As transistors get smaller, their power density stays constant

• Transistor dimensions scaled by 0.7x

• Capacitance reduced by 0.7x

• Frequency increased by 1.4x (due to reduced delay)

• Voltage reduced by 0.7x

𝑷𝒐𝒘𝒆𝒓 = 𝑪𝒂𝒑𝒂𝒄𝒕𝒊𝒗𝒆 𝑳𝒐𝒂𝒅 × 𝑽𝒐𝒍𝒕𝒂𝒈𝒆𝟐 × 𝑭𝒓𝒆𝒒𝒖𝒆𝒏𝒄𝒚

𝑷𝒏𝒆𝒘
𝑷𝒐𝒍𝒅

=
𝑪𝒐𝒍𝒅 × 𝟎. 𝟕 × (𝑽𝒐𝒍𝒅 × 𝟎. 𝟕)𝟐 × 𝑭𝒐𝒍𝒅 × 𝟏. 𝟒

𝑪𝒐𝒍𝒅 × 𝑽𝒐𝒍𝒅
𝟐 × 𝑭𝒐𝒍𝒅

= 𝟎. 𝟒𝟖

Doubled transistors with faster performance at constant power!

4190.308: Computer Architecture | Fall 2022 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 15

▪ The power wall

• We can’t reduce voltage further

• We can’t remove more heat

▪ How else can we

improve performance?

4190.308: Computer Architecture | Fall 2022 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 16

▪ ILP wall

• Control dependency

• Data dependency

▪ Memory wall

• Memory latency

improved by

10% / year

• Cache shows

diminishing returns

▪ Power wall

Source: IEEE Computer, 2011

4190.308: Computer Architecture | Fall 2022 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 17

▪ The theoretical upper limit of speed up is limited by the serial portion

of the code

• S = (1 – P): the time spent executing the

serial portion

• n: the number of processor cores

▪ Corollary: make the common case fast

𝑆𝑝𝑒𝑒𝑑𝑢𝑝 =
1

(1 − 𝑃) +
𝑃
𝑛

4190.308: Computer Architecture | Fall 2022 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 18

4190.308: Computer Architecture | Fall 2022 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 19

▪ Application software

• Written in high-level language

▪ System software

• Compiler: translates HLL code to machine code

• Operating system: service code

– Handling input/output

– Managing memory and storage

– Scheduling tasks & sharing resources

▪ Hardware

• Processor, memory, I/O controllers

4190.308: Computer Architecture | Fall 2022 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 20

Operating system

Compilers, linkers, libraries

Programming languages (e.g., C)

Data structures & algorithms

Digital logic

Transistors

Processing, Fabrication

Chemistry, Physics

Software

Hardware

Application programs

?
Hardware description languages

4190.308: Computer Architecture | Fall 2022 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 21

▪ Commands (or instructions)

• Go one step forward 00

• Go one step backward 01

• Turn left 10

• Turn right 11

00 00 11 00 11
00 00 10 00 10
00 00 11 00 11
00 00 10 00 10 ...

...

Image from https://www.lge.co.kr/vacuum-cleaners

▪ A simple program

4190.308: Computer Architecture | Fall 2022 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 22

▪ The hardware/software interface

• Hardware abstraction visible to software (OS, compilers, …)

• Instructions and their encodings, registers, data types, addressing modes, etc.

• Written documents about how the CPU behaves

• e.g., All 64-bit Intel CPUs follow the same x86-64 (or Intel 64) ISA

x86-64 ISA

Operating system

Compilers

...

Black box

Software
Developers

x86-64 ISA

Black box

Microarchitecture

…

Hardware
Developers

4190.308: Computer Architecture | Fall 2022 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 23

▪ High-level language
• Level of abstraction closer to problem domain

• Provides for productivity and portability

▪ Assembly language
• Textual representation of instructions

• For humans

▪ Machine language
• Hardware representation

• Binary digits (bits)

• Encoded instructions and data

4190.308: Computer Architecture | Fall 2022 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 24

Operating system

Compilers, linkers, libraries

Programming languages (e.g., C)

Data structures & algorithms

Microarchitecture

Hardware description languages

Digital logic

Transistors

Processing, Fabrication

Chemistry, Physics

Software

Hardware

Architecture
Interface between
software and hardware

Application programs

4190.308: Computer Architecture | Fall 2022 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 25

▪ Abstraction helps us deal with complexity

• Hide lower-level details

▪ These abstractions have limits

• Especially in the presence of bugs

• Need to understand details of underlying implementations

▪ What is the right place to solve the problem?

▪ This is why you should take this course seriously

even if you don’t want to be a computer architect!

Operating system

Architecture

Compilers, linkers, libraries

Programming languages (e.g., C)

Data structures & algorithms

Microarchitecture

Hardware description languages

Digital logic

Transistors

Processing, Fabrication

Chemistry, Physics

Application programs

4190.308: Computer Architecture | Fall 2022 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 26

▪ Choices critically affect both the software programmer and hardware

designer

▪ Example: Copying n bytes from address A to B

▪ Trade-offs: code size, compiler complexity, operating frequency, number

of cycles to execute, hardware complexity, energy consumption, etc.

movq A, %rsi
movq B, %rdi
movq n, %rcx
REP MOVS

la a0, A
la a1, B
li a2, n
add a3, a0, a2

L0:
lbu a4, 0(a0)
sbu a4, 0(a1)
addi a0, a0, 1
addi a1, a1, 1
bne a0, a3, L0

x86_64 (CISC) RISC-V (RISC)

4190.308: Computer Architecture | Fall 2022 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 27

▪ Microarchitectures: Where should you spend transistors to run your

program faster with conforming to the given interface?

Source: https://en.wikichip.org/wiki/intel/core_i9/i9-9900k, https://en.wikichip.org/wiki/apple/ax/a12x

Intel Core i9-9900K (Coffee Lake, 2018)

Transistors: ~ 3B (14nm), Die size: ~ 177mm2

Apple A12X Bionic (2018)

Transistors: ~ 10B (7nm), Die size: ~ 122mm2

4190.308: Computer Architecture | Fall 2022 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 28

▪ Instruction level parallelism (ILP)

• Pipelining

• Superscalar

• Out-of-order execution

• Branch prediction

• VLIW (Very Long Instruction Word)

▪ Data level parallelism (DLP)

• SIMD / Vector instructions

▪ Task level parallelism (TLP)

• Simultaneous multithreading (Hyperthreading)

• Multicore

4190.308: Computer Architecture | Fall 2022 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 29

▪ It's just too slow!

4190.308: Computer Architecture | Fall 2022 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 30

▪ Design for Moore’s Law

▪ Use abstraction to simplify design

▪ Make the common case fast

▪ Performance via parallelism

▪ Performance via pipelining

▪ Performance via prediction

▪ Hierarchy of memories

▪ Dependability via redundancy

4190.308: Computer Architecture | Fall 2022 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 31
Source: J. L. Hennessy and D. A. Patterson, “A New Golden Age for Computer Architecture”, CACM, 2019.

End of
Moore’s law

A New Golden Age
for Computer
Architecture
(CACM, Feb. 2019)

