Jin-Soo Kim
(jinsoo.kim@snu.ac.kr)

Systems Software &
Architecture Lab.

Seoul National University

Fall 2022

Virtual Memory

Chap. 5.7-5.8,5.13,5.16 - 5.17

Virtualizing Memory

= Example

* What happens if two users simultaneously run this program?

##tinclude <stdio.h>
int n = 9;

int main ()
{
N++;
printf (“&n = %p, n = %d\n”, &n, n);
}

% ./a.out
&n = 0x0804a2024, n
% ./a.out
&n = 0x0804a2024, n = 1

Il
=

Physical Addressing

* Used in “simple” systems like embedded microcontrollers

* Cars, elevators, digital cameras, etc.

Main memory
0:
1:
Physical address 2:

(PA) 3:
CPU >

Data word

Virtual Addressing

* Used in all modern servers, laptops, and smartphones

" One of the great ideas in computer science

CPU Chip
Virtual address
(VA)
CPU
'T‘ 4100

Physical address

(PA)

Main memory

MMU

Data word

Virtual Address space

* Process’ abstract view of memory

* OS provides illusion of private address
space to each process

* Contains all of the memory state of
the process

= Static area: allocated on exec()
* Code & Data

* Dynamic area: allocated at runtime
* Can grow or shrink
* Heap & Stack

unused

read-only segment
(.init, .text, .rodata)

read/write segment
(.data, .bss)

run-time heap
(managed by malloc)

< brk
)
T . stack
' “— pointer

user stack
(created at runtime)

memory
kernel virtual memory invisible to
(code, data, heap, stack) user code
N-1

Virtual Memory

= Use main memory as a “cache” for secondary (disk) storage
* Managed jointly by CPU hardware and the operating system

* Programs share main memory
* Each gets a private virtual address space holding its frequently used code and data
* Use virtual addresses for memory references
* Virtual address space is protected from other processes

* Lazy allocation: physical memory is dynamically allocated or released on demand

* CPU and OS translate virtual addresses to physical addresses
* VM “block” is called a page

* VM translation “miss” is called a page fault

Address Translation

" Fixed-size pages (e.g., 4KB)

Virtual addresses

Physical addresses

Virtual address

47 46 45 44 43 ----«ccevviiaiiiiian 1514131211 1098 ---------.- 3210

Virtual page number Page offset

-

LI

Disk addresses

Y

(Translation)

39 3837 cvverecaiiariiiiaiis 1514 13 12 11 1098-“"; 3210

Physical page number Page offset

Physical address

Page Tables

= Stores placement information
* Array of page table entries (PTEs), indexed by virtual page number
* Page table register in CPU points to page table in physical memory

" |f page is present in memory
* PTE stores the physical page number
* Plus other status bits (protection, referenced, dirty, ...)

= |f page is not present

* PTE can refer to location in swap space on disk

Address Translation with a Page Table

Page table
base register (PTBR)
(satp in RISC-V)

Virtual address
n-1

p p-1

Virtual page number (VPN)

Virtual page offset (VPO)

Page table
Valid Physical page number (PPN)

Physical page table
address for the current
process

Valid bit = 0:

Page not in memory €
(page fault)

Valid bit =1

m-1 v

p p-l v

0

Physical page number (PPN)

Physical page offset (PPO)

Physical address

Mapping Pages to Storage

Virtual page
number

Page table
Physical page or

Valid disk address

/1Y

2

Physical memory

!
N\
(

A\

Q\
N\
/

| O == | O =t | = | O = | =t | =t | =

) s

/

.
-

—
Lag

Disk storage

T
—
b |

~—

10

A Two-Level Page Table Hierarchy

Level 1 Level 2 Virtual
page table page tables memory
0
vo |)
o |—— |_Preo
BTE 1 VP 1023 > 2K allocated VM pages
oTE 1023 VP 1024 for code and data
PTE 2 (null)
PTE 3 (null)
vP2047 |
PTE 4 (null) — 3
PTE 5 (null)
PTE 6 (null) PTE 1023
PTE 7 (null) Gap > 6K unallocated VM pages
PTE 8 >
1023 null
(1K - 9) PTEs)
null PTEs PTE 1023 1023
unallocated 1023 unallocated pages
pages
32 bit addresses, 4KB pages, 4-byte PTEs VP 9215 1 allocated VM page

for the stack

11

Core i/ Page

CR3

9

Table Translation

Physical
address
of L1 PT

d 9 12 Virtual
VPN 1 VPN 2 VPN 3 VPN 4 VPO
address
L1 PT L2 PT L3 PT L4 PT
Page global Page upper Page middle Page
40 directory 40 directory 40 directory 40 table
I' » 7> » 7>
Offset into
112 physical and
» L1PTE » L2 PTE —»{ L3PTE —' — L4PTE virtual page
Physical
address
512 GB 1GB 2MB 4 KB of page
region region region region
per entry per entry per entry per entry
49
l 7
40 12 ' Physical
PPN PPO

address

12

TLB

= Address translation would appear to require extra memory references

* One to access the PTE
* Then the actual memory access

" But access to page tables has good locality
* Use a fast cache of PTEs within the CPU
* Called a Translation Look-aside Buffer (TLB)

* Typical: 16 —512 PTEs, 0.5 — | cycle for hit, 10 — 100 cycles for miss,
0.01% — 1% miss rate

* Misses could be handled by hardware or software

13

Fast Translation Using a TLB

TLB
Virtual page Physical page
number Valid Dirty Ref Tag address

| |
1101 e
1111 .. Physical memory
1]1]1 . .
1]0][1 —
0[O0
1]0]1 o~

Page table

Physical page

Valid Dirty Ref or disk address

RERIIE o

77070 :

77070 — w
110 1 L D
0070 —= N

1101 -/// | |
AE — | |
0[{0]0 7

EE i u |
1] 7 N —
0070 —

1(1]1 7

TLB Hit

= ATLB hit eliminates a memory access

CPU Chip

CPU

TLB

VPN

> MMU

Data

>
Cache/

Memory

15

TLB Miss

= ATLB miss incurs an additional memory access (the PTE)
* Fortunately, TLB misses are rare.Why?

CPU Chip

TLB o

6 PTE

VPN

VA PTEA
> >
CPU MMU Cache/
] 3 s| Memory
Data

Page Fault Handler

Use faulting virtual address to find PTE
Locate page on disk

Choose page to replace
* If dirty, write to disk first

Read page into memory and update page table

Make process runnable again

* Restart from faulting instruction

Page Fault Penalty

" On page fault, the page must be fetched from disk

* Takes millions of clock cycles
* Handled by OS code

* Try to minimize page fault rate
* Fully associative placement

* Smart replacement algorithms

18

From CPU to Memory

* Physically addressed cache
* Allows multiple processes to have blocks in cache
* Allows multiple processes to share pages
* Address translation is on the critical path

TLB hit PA PA Memor
> Cache > y
Cache
miss
TLB niss Page Cache
page fault - tables hit
protection fault
PTE
Data Data

4190.308: Computer Architecture | Fall 2022 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

Intel Core i7 Memory System

Processor package

' Core x4 :

| N Instruction MMU E

| g fetch (addr translation) :

; i ! ;

: L1 d-cache L1 i-cache L1 d-TLB L1i-TLB :

E 32 KB, 8-way 32 KB, 8-way 64 entries, 4-way 128 entries, 4-way !

1 A A A 1

: \ 4 A\ 4 v A 4 :

i L2 unified cache L2 unified TLB |

: 256 KB, 8-way 512 entries, 4-way :

: ¥ :

| » To other
i QuickPath interconnect 3 cores

: 4 links @ 25.6 GB/s each ’ ' To1/0
i : bridge
1 v v v 1

! L3 unified cache DDR3 Memory controller !

i 8 MB, 16-way) q 3 x 64 bit @ 10.66 GB/s ;

i (shared by all cores) 32 GB/s total (shared by all cores) i

| X A .

Main memory

Memory Hierarchy Principles

Memory Hierarchy Principles

= Common principles apply at all levels of the memory hierarchy

* Based on notions of caching

= At each level in the hierarchy
* Block placement
* Finding a block
* Replacement on a miss

* Write policy

Block Placement

* Determined by associativity
* Direct mapped (|-way associative) — one choice for placement
* n-way set associative — n choices within a set

* Fully associative — any location

* Higher associativity reduces miss rate

* Increases complexity, cost, and access time

4190.308: Computer Architecture | Fall 2022 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

23

Finding a Block

Direct mapped Index 1

n-way set associative Set index, then search n
entries within the set

Fully associative Search all entries #entries
Full lookup table 0

* Hardware caches
* Reduce comparisons to reduce cost

= Virtual memory
* Full table lookup makes full associativity feasible

* Benefit in reduced miss rate

4190.308: Computer Architecture | Fall 2022 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

24

Replacement

* Choice of entry to replace on a miss
* Least recently used (LRU)

— Complex and costly hardware for high associativity

* Random
— Close to LRU, easier to implement

" Virtual memory

* LRU approximation with hardware support

4190.308: Computer Architecture | Fall 2022 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

25

Write Policy

" Write-through
* Update both upper and lower levels

* Simplifies replacement, but may require write buffer

" Write-back

* Update upper level only
* Update lower level when block is replaced

* Need to keep more state

" Virtual memory

* Only write-back is feasible, given disk write latency

4190.308: Computer Architecture | Fall 2022 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

26

Cache Design Trade-offs

Design change Effect on miss rate

Negative
performance effect

Decrease capacity

Increase cache size .
misses

Decrease conflict

Increase associativity .
misses

Decrease compulsory

Increase block size .
misses

4190.308: Computer Architecture | Fall 2022 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

May increase access
time

May increase access
time

Increases miss
penalty. For very large
block size, may
increase miss rate due
to pollution.

Multilevel On-Chip Caches

L1 cache organization

Split instruction and data caches

Split instruction and data caches

L1 cache size

Configurable 16 to 64 KiB each
for instructions/data

32 KiB each for instructions/data per

core

L1 cache associativity

Two-way (1), four-way (D) set
associative

Four-way (1), eight-way (D) set
associative

L1 replacement

Random

Approximated LRU

L1 block size

64 bytes

64 bytes

L1 write policy

Write-back, variable allocation
policies (default is Write-allocate)

Write-back, No-write-allocate

L1 hit time (load-use)

Two clock cycles

Four clock cycles, pipelined

L2 cache organization

Unified (instruction and data)

Unified (instruction and data) per core

L2 cache size

128 KiB to 2 MiB

256 KiB (0.25 MiB)

L2 cache associativity

16-way set associative

8-way set associative

L2 replacement

Approximated LRU

Approximated LRU

L2 block size

64 bytes

64 bytes

L2 write policy

Write-back, Write-allocate

Write-back, Write-allocate

L2 hit time

12 clock cycles

10 clock cycles

L3 cache
organization

Unified (instruction and data)

L3 cache size

8 MiB, shared

L3 cache
associativity

16-way set associative

L3 replacement

Approximated LRU

L3 block size

64 bytes

L3 write policy

Write-back, Write-allocate

L3 hit time

35 clock cycles

4190.308: Computer Architecture | Fall 2022 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

28

2-Level TLB Organization

Characteristic ARM Cortex-A53 m

Virtual address

48 bits

48 bits

Physical address

40 bits

44 bits

Page size

Variable: 4, 16, 64 KiB, 1, 2 MiB, 1 GIiB

Variable: 4 KiB, 2/4 MiB

TLB organization

1 TLB for instructions and 1 TLB
for data per core

Both micro TLBs are fully associative,
with 10 entries, round robin
replacement

64-entry, four-way set-associative TLBs

TLB misses handled in hardware

1 TLB for instructions and 1 TLB for
data per core

Both L1 TLBs are four-way set
associative, LRU replacement
L1 I-TLB has 128 entries for small

pages, seven per thread for large pages

L1 D-TLB has 64 entries for small
pages, 32 for large pages

The L2 TLB is four-way set associative,
LRU replacement

The L2 TLB has 512 entries

TLB misses handled in hardware

4190.308: Computer Architecture | Fall 2022 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

29

Summary

* Fast memories are small, large memories are slow
* We really want fast, large memories @

* Caching gives this illusion ©

" Principle of locality

* Programs use a small part of their memory space frequently

= Memory hierarchy
* LI cache <> L2 cache <> ... <> DRAM memory <> disk

= Memory system design is critical for multiprocessors

30

