Jin-Soo Kim
(jinsoo.kim@snu.ac.kr)

Systems Software &
Architecture Lab.

Seoul National University

Fall 2022

Pipeline Hazards

Hazards

= Situations that prevent starting the next instruction in the next cycle

= Structural hazard

* A required resource is busy

= Data hazard
* Need to wait (or stall) for previous instruction to complete its data read/write

= Control hazard

* Deciding on control action depends on previous instruction

Structural Hazard

= Conflict for use of a resource

* |n RISC-V pipeline with a single memory

* Load/store requires data access

* |nstruction fetch would have to stall

for that cycle
- Would cause a pipeline “bubble”

* Pipelined datapaths require
separate instruction/data memories
(or separate instruction/data caches)

= Register file also requires multiple
ports (for 2 reads and | write)

IF

ID

EX

MEM

WB

Register write

IF

ID

EX

MEM

WB

Memory read/write

IF

ID

EX

MEM

WB

Register read

Memory read

IF

ID

EX

MEM

WB

IF

ID

EX

MEM

WB

Data Hazards

Chap. 4.8

Data Hazard

* An instruction depends on completion of data access by a previous
Instruction

= Also called “Read-After-Write (RAW)” hazard

» This hazard results from an actual need for communication

! 200 400 600 800 1000 1200 1400 1600
Time T T T T | T T ™

add x19, x0, x1 IF —E§|D SEX—MEM WB%

:
a
5/
s |

|
\
|

MEM

sub x2, x19, x3

Solutions to Data Hazard

* Freezing (or stalling) the pipeline
* Forwarding
* Compiler scheduling

" Out-Of-Order execution (discussed later)

Freezing the Pipeline

= Stall the pipeline until dependences are resolved

" ALU result to next instruction (2 stalls)

Time

add x19, x0, x1

sub x2, x19, x3

200 400 600

800

1000

1200

1400

1600
hard

WB |

|
—C D %E%ﬂ————hﬂEM

IF

B :
bubble bubble) (bubble bubble) (bubble
© @ O O O
bubble bubble bubble bubble bubble
@ @ O O O

—L 1D

=

MEM

N/

[

Forwarding (or Bypassing)

= Use result when it is computed
* Don’t wait for it to be stored in a register

* Requires extra connections in the datapath

Program
execution _ 200 400 600 800 1000
order Time . I . . : .
(in instructions))) .

add x19, x0, x1 IF &

MEM WB |

sub x2, x19, x3

Forwarding: Load-Use Data Hazard

= Can’t always avoid stalls by forwarding
* If value not computed when needed

e Can’t forward backward in time!

Program
execution
order Time 2(|)O 4[.)0 6(|)O 8[.)0 10|00 12|00 14|00
(in instructions) ‘ L
1W Xl, @(XZ) IF —': ID %—MEM WBE
bubble bubble bubble bubble bubble
O O O O O
sub x4, x1, x5 F —= 1D MEM— W8 |

4190.308: Computer Architecture | Fall 2022 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

Forwarding: Multiple Readers

. 200 400 600 800 1000 1200 1400 1600
Time >

add x10, x4, x5 IF

MEM WB

sub x6, x10, x4 0 %% \mmn s

and x7, x10, x© IF —E D a MEM we

xor x8, x10, x3 IF—EEID >EX MEM—@B@

4190.308: Computer Architecture | Fall 2022 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 10

Forwarding: Multiple Writers

Time 20|0 4C|)O BCIJO 8CI)O 1 0|00 1 2|00 1 4|00 1 6|00=
add x10, x4, x5 F —EE SEX——|MEM
sub x10, x5, X6 F D >E s
addi x10, x2, 1] vEM— e
xor x8, x19, x7/ IF _ PEX MEM—@B

4190.308: Computer Architecture | Fall 2022 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

Compiler Scheduling

= Reorder code to avoid use of load result in the next instruction
* C code forv[3] v[io] + v[1]; v[4] = v[O] + v[2];

Tw x1, 0(x0) Tw
w @4\0(0) w
Stall —— add X3, xl,@ Tw

sw x3, 12(x0) add
w (x4).8(x0) sw
stall —— add x5, x;(x4) add
sw x5, 16(x0) Sw x5, 16(x0)

13 cycles 11 cycles

Data Hazards in RISC-V

= Consider this sequence:

sub
and
or

add
SW

x2, x1, %3

x12, x2, X5
x13, X6, X2
x14, x2, X2
x15, 100(x2)

" We can resolve hazards with forwarding

* How do we detect when to forward!?

13

Dependencies and Forwarding

Time (in clock cycles) >
Value of CC1 CC2 CC3 CC4 CC5 CC6 CC7 CC8 CC9

register x2: 10 10 10 10 10/-20 =20 =20 -20 -20
Program
execution
order
(in instructions)
=)
sub x2, x1, x3 DM egjl
1
and x12, x2, x5 M q

or x13, x6, x2

add x14, x2, x2

vy sSwx15, 100(x2)

4190.308: Computer Architecture | Fall 2022 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

14

Detecting the Need to Forward

= Pass register numbers along pipeline
* e.g,ID/EX.RegisterRsl = register # for Rs1 sitting in ID/EX pipeline register

* ALU operand register numbers in EX stage are given by
« ID/EX.RegisterRsl, ID/EX.RegisterRs2

= Data hazards when

ID/EX.RegisterRsi | Forward from

. > EX/MEM pipeline
ID/EX.RegisterRs2 register

EX/MEM.RegisterRd
EX/MEM.RegisterRd

\

ID/EX.RegisterRsl Forward from
) > MEM/WB pipeline
ID/EX.RegisterRs2 register

MEM/WB.RegisterRd
MEM/WB.RegisterRd

15

Detecting the Need to Forward (contd)

= But only if forwarding instruction will write to a register!

EX/MEM.RegWrite, MEM/WB.ReghWrite

= And only if Rd for that instruction is not x0

EX/MEM.RegisterRd # 0,
MEM/WB.RegisterRd # ©

Forwarding Paths

ID/EX

AR

Registers

Y

EX/MEM

00
01

A ForwardA

[an)

fan)
Oy R ¢O
=

=
x

i

-
Jail

>ALU ——>

MEM/WB

Data
memory

A J

Y

L__

ForwardB

P
-

EX/MEM.RegisterRd

Y

Forwarding

-

MEM/WB.RegisterRd

:k unit

17

Forwarding Conditions

EX hazard

if (EX/MEM.RegWrite and (EX/MEM.RegisterRd # 0)
and (EX/MEM.RegisterRd = ID/EX.RegisterRsl))
forwardA = 10

if (EX/MEM.RegWrite and (EX/MEM.RegisterRd # 0)
and (EX/MEM.RegisterRd = ID/EX.RegisterRs2))

forwardB = 10

= MEM hazard

if (MEM/WB.RegWrite and (MEM/WB.RegisterRd # 0)
and (MEM/WB.RegisterRd = ID/EX.RegisterRsl))
forwardA = 01

if (MEM/WB.RegWrite and (MEM/WB.RegisterRd # 0)
and (MEM/WB.RegisterRd = ID/EX.RegisterRs2))
forwardB = 01

18

Forwarding Control

MUX control Source Example

ForwardA = 00 ID/EX The first ALU operand comes from the register file.

ForwardA = 10 EX/MEM The first ALU operand is forwarded from the prior ALU
result.

ForwardA = 01 MEM/WB The fII’Stt ALU operand is forwarded from data memory or
an earlier ALU result.

ForwardB = 00 ID/EX The second ALU operand comes from the register file.

Forwards = 10 EX/MEM The second ALU operand is forwarded from the prior ALU
result.

Forwards = 01 MEM/WB The secon.d ALU operand is forwarded from data memory
or an earlier ALU result.

19

Double Data Hazard

= Consider this sequence:

add x1, x1, x2
add x1, x1, x3
add x1, x1, x4

= Both hazards occur

* Want to use the most recent

= Revise MEM hazard condition

* Only forward if EX hazard condition isn’t true

20

Revised Forwarding Conditions

= MEM hazard

if (MEM/WB.RegWrite
and (MEM/WB.RegisterRd # 0)
and not (EX/MEM.RegWrite and (EX/MEM.RegisterRd # 0)
and (EX/MEM.RegisterRd = ID/EX.RegisterRsl))
and (MEM/WB.RegisterRd = ID/EX.RegisterRsl))

forwardA = 01

if (MEM/WB.RegWrite
and (MEM/WB.RegisterRd # 0)
and not (EX/MEM.RegWrite and (EX/MEM.RegisterRd # 0)
and (EX/MEM.RegisterRd = ID/EX.RegisterRs2))
and (MEM/WB.RegisterRd = ID/EX.RegisterRs2))

forwardB = 01

21

Datapath with Forwarding

Instruction
memory

IF/ID

ID/EX

WB

| Instruction

]

’_’ EX/MEM
Control » M = WB MEM/WB
EX - M »\VB
= U >
’ y
_ |
Registers 1 ALU > | | - M
> . - u
. > X
L I‘l": N Data
T | x g memory
| o
IF/ID.RegisterRs1 Rs1 . _
IF/ID RegisterRs2 | [Rs2
IF/ID.RegisterRd Rd EX/MEM.RegisterR_q
MEM/MWB.RegisterRd
4
L 2

22

Complete Datapath with Forwarding

ID/EX EX/MEM MEM/WB

\

Registers

Data
memory

Y

\ J

Y

::;orwarding\
> unit /

i
-

4190.308: Computer Architecture | Fall 2022 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

Load-Use Hazard

Time (in clock cycles)
CC1 CC2 CC3 CC4

Program
execution
order

(in instructions)

rs
Iw x2, 20(x1) IM 'Regl

and x4, x2, x5 IM —

r—

or x8, x2, x6 IM — H=Reg

add x9, x4, x2 IM

sub x1, x6, x7

4190.308: Computer Architecture | Fall 2022 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

CC5

CC®o

10

1[

DM

-
—HReg

CC7 CC38

CC9

Can’t go

backward here

-1
e

o

> DM

=1

Reg!

24

Load-Use Hazard Detection

" Check when using instruction is decoded in ID stage

* ALU operand register numbers in ID stage are given by
« TF/ID.RegisterRsl, IF/ID.RegisterRs2

" | oad-use hazard when

ID/EX.MemRead and
((ID/EX.RegisterRd
(ID/EX.RegisterRd

IF/ID.RegisterRsl) or
IF/ID.RegisterRs2))

= |f detected, stall and insert bubble

How to Stall the Pipeline

* Force control values in ID/EX register to 0O
* EX, MEM and WB do nop (no-operation)

* Prevent update of PC and IF/ID register
* Using instruction is decoded again
* Following instruction is fetched again

* |-cycle stall allows MEM to read data for 1d
—> Can subsequently forward to EX stage

4190.308: Computer Architecture | Fall 2022 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

26

Pipeline Register Modes

State = x
Input =y Output = x
Normal DX —>
_ I
stall =0 bubble =0
State = x
Input =y Output = x
Stall DX >
_ SR
stall =1 bubble =0
State = x
Input = Output = x
Bubble P "
_ I
stall =0 bubble =1

2

N

Rising
clock

Rising
clock

Rising
clock

State =y

Output =y

State = x

Output = x
>

State = nop

Output = nop

p=>

27

Load-Use Data Hazard

Time (in clock cycles)
CC1 CC2 CC3 CC4 CC5 CC6 CC7

Program
execution
order

(in instructions) - - -

lw x2, 20(x1) IM

and becomes nop

and x4, x2, x5

or x8, x2, x6

! add x9, x4, x2

4190.308: Computer Architecture | Fall 2022 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

CC8

CC9 CC 10

Stall inserted
here

LE

DM

eg

28

Datapath

with Hazard Detection

PCWrite

H_

Instruction
memory

IF/DWrite

T

Hazard ID/EX.MemRead
- detection <
— unit /
3
ID/EX
e EX/MEM
»(Control M > WB |_|\iE|V|/VVB
ID 0 EX > M WB—
'
> > M
- U >
g > X
'*;:,5 Registers _I/: " N | _
> AForwar
icn - - - m ALU
| R I:Jn Data
" memo
- X i
ForwardB
IF/ID.RegisterRs1 N -
IF/ID.RegisterRs2 .
IF/ID.RegisterRd - Rd - -

Rs1 Forwarding
Rs2 unit /<

xXc=s

29

Stalls and Performance

= Stalls reduce performance

* But they are required to get correct results

* Compiler can arrange code to avoid hazards and stalls

* Requires knowledge of the pipeline structure

30

Control Hazards

Chap. 4.9

Control Hazard

» Branch determines flow of control

* Fetching next instruction depends on branch outcome
* Pipeline can’t always fetch correct instruction: still working on ID stage of branch

Program
execution 200 400 600 800 1000 1200 1400 _
grder I I 1 I I I 1
(in instructions)
add x4, x5, x6 |t [Reg| AW | %@ |Reg
beq x1,x0,40 = oS Meen | |Re8| ALV | ocess |Re9
| 3 400(x0 ~+——|nstruction R ALU Data R
W X3, (x0) 200 ps | fetch °9 access | o9

Y

32

Solutions to Control Hazard

= Stall on branch
* Branch prediction

* Delayed branch (compiler scheduling to avoid stalls)

33

Stall on Branch

" Wit until branch outcome determined before fetching next instruction

= Assuming the branch outcome is available at the end of the EX stage,
we need 2 stall cycles

. 200 400 600 800 1000 1200 1400 1600
Time T T T T | T T >

N/

beq x10, x11, L1 |Fl—mn o g

MEM
bubble bubble,) (“bubble bubble,) (" bubble
© O O O O
bubble bubble bubble bubble bubble
@ @ O O O
IF |

L © D E MEM WB |

; / i

N/

L1: sub x2, x12, x3

34

Branch Prediction

* Longer pipelines can’t readily determine branch outcome early

* Stall penalty becomes unacceptable

* Predict outcome of branch

* Only stall if prediction is wrong

* Example: Always-not-taken branch prediction
* Can predict branches not taken
* Fetch instruction after branch, with no delay
* Cancel the fetched instruction if the prediction was wrong

35

Control Hazards in RISC-V

= |f branch outcome determined in MEM

Time (in clock cycles)

CC1 CC2 CC3 CC4 CC5 CC6 CC7 CC8 CC9

Program
execution
order

(in instructions)

40 beq x1, x0, 16

[—

44 and x12, x2, x5

Flush these
> | instructions
(Set control
values to 0)

48 or x13, x6, x2

52 add x14, x2, x2

—

72 Iw x4, 100(x7)

4190.308: Computer Architecture | Fall 2022 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

36

Reducing Branch Delay

* Move hardware to determine outcome to ID stage (| stall)
* Target address adder

* Register comparator

Program
execution Ti 200 400 600 800 1000 1200 1400
order Ime | I | | | I | >
(in instructions)
add x4, x5, x6 |"SHAON IReg| ALU agjégs Reg
| : Instruction Data
beq X1’ XO’ 40 200 pS fetch access
buble buble buble bubble bubble
(5 4! g
or X7, X8, X9 »{Instruction Data R
Y 400 ps fetch access °9

37

Example

36:
40:
44 .
48:
52:
56:

72:

sub
beq
and
or

add

sub

1w

x10, x4, x3
x1l, x3, 16

x12,
x13,
x14,
x15,

X2,
X2,
X4,

X6,

X5
X6
X2
X7

X4, 50(x7)

// PC-relative branch to 40+16*2 = 72

38

Example: Branch Taken

and x12, x2, x5 beq x1, x3, 16 sub x10, x4, x8 before<1> before<2>

IF.Flush

/ Hazard

detection]

unit /

I
I
I
I
I
I
I
I
|
I
I
I
I
I
I
I
:
IDJEX

» ”"WB EX/MEM

. u M we) MEM/WB

I =
72 0 EX » M WB

—»Control

4
x1 X
Redi
egi] ~(M
X3 u
X8
o - Data X
memory

10
B
Forwarding
unit - t
|

Clock 3

4190.308: Computer Architecture | Fall 2022 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

Example: Branch Taken (cont'd)

Iw x4, 100(x7) | Bubble (nop) | beq x1, x3, 16 | subx10,... . before<1>
IF.Flush ! ! ! :
: Hazard | | '
detection | I ! !
unit)/ | | :
IDfIEX ! !
M b EX/MEM !
@+ Control u M > E‘ M
X
[] 0 EX
"~ 3
Shift’
left 1
Registers
76 N Data
memory
(o -
Gen
1 1
Clock 4 | I

4190.308: Computer Architecture | Fall 2022 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

Another Cost of Branch Test in ID

* Register operands may require forwarding

* New forwarding logic from EX/MEM or MEM/WB pipeline registers to ID needed

= Stalls due to data hazard

* |-cycle stall if the preceding
instruction is an ALU instruction

* 2-cycle stall if the preceding
instruction is the load instruction

add x3,x4,x5
beq x8,x3,10

lw x3,0(x4)
beq x8,x3,10

IF

ID

EX

EM WB

IF

)

MEM

WB

IF

ID

EX

IF

EX

MEM

WB

41

More Realistic Branch Prediction

= Static branch prediction
* Based on typical branch behavior

* Example: loop and if-statement branches
— Predict backward branches taken
— Predict forward branches not taken

* Dynamic branch prediction

e Hardware measures actual branch behavior
— e.g., record recent history of each branch

* Assume future behavior will continue the trend
— When wrong, stall while re-fetching and update history

4190.308: Computer Architecture | Fall 2022 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

42

Dynamic Branch Prediction

" |n deeper and superscalar pipelines, branch penalty is more significant

* Use dynamic prediction
* Branch prediction buffer (or branch history table)
* Indexed by recent branch instruction addresses

* Stores outcome (taken / not taken)

* To execute a branch
* Check table, expect the same outcome
* Start fetching from fall-through or target
* If wrong, flush pipeline and flip prediction

43

| -Bit Predictor: Shortcoming

* |nner loop branches mispredicted twice!

outer: ... <

A

inner:

beq .., .., inner |—

beq .., .., outer

* Mispredict as taken on last iteration of inner loop

* Then mispredict as not taken on first iteration of inner loop next time around

4190.308: Computer Architecture | Fall 2022 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

2-bit Predictor

* Only change prediction on two successive

Not taken

\

mispredictions

Taken

Not taken

Nottakenl ‘ Taken

Predict not taken

Taken

N

4190.308: Computer Architecture | Fall 2022 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

45

Calculating Branch Target

= Even with predictor, still need to calculate the target address

* |-cycle penalty for a taken branch

* Branch target buffer (BTB)

* Cache of target addresses
* Indexed by PC when instruction fetched
* If hit and instruction is branch predicted taken, can fetch target immediately

4190.308: Computer Architecture | Fall 2022 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

46

Summary

* Pipelining improves performance by increasing instruction throughput
* Executes multiple instructions in parallel

* Each instruction has the same latency

" Subject to hazards

e Structural, data, control

" |nstruction set design affects complexity of pipeline implementation

47

