
Performance

Jin-Soo Kim
(jinsoo.kim@snu.ac.kr)

Systems Software &
Architecture Lab.

Seoul National University

Fall 2021

CPU Performance

Chap. 1.6, 2.13

4190.308: Computer Architecture | Fall 2021 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 3

▪ Measure, analyze, report, and summarize

▪ Make intelligent choices

▪ See through the marketing hype

▪ Key to understanding underlying organizational motivation

▪ Questions

• Why is some hardware better than others for different programs?

• What factors of system performance are hardware related?

(e.g., Do we need a new machine or a new operating system?)

• How does the machine’s instruction set affect performance?

4190.308: Computer Architecture | Fall 2021 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 4

▪ Algorithm

• Determines number of operations executed

▪ Programming language, compiler, architecture

• Determine number of machine instructions executed per operation

▪ Processor and memory system (microarchitecture)

• Determine how fast instructions are executed

▪ I/O system (including OS)

• Determines how fast I/O operations are executed

4190.308: Computer Architecture | Fall 2021 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 5

▪ Which airplane has the best performance?

0 100 200 300 400 500

Douglas DC-8-50

BAC/Sud Concorde

Boeing 747

Boeing 777

Passenger Capacity

0 2000 4000 6000 8000 10000

Douglas DC-8-50

BAC/Sud Concorde

Boeing 747

Boeing 777

Cruising Range (miles)

0 500 1000 1500

Douglas DC-8-50

BAC/Sud Concorde

Boeing 747

Boeing 777

Cruising Speed (mph)

0 100000 200000 300000 400000

Douglas DC-8-50

BAC/Sud Concorde

Boeing 747

Boeing 777

Passengers x mph

4190.308: Computer Architecture | Fall 2021 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 6

▪ Response time (≈ execution time, latency)

• The time between the start and completion of a task

• How long does it take for my job to run?

• How long must I wait for the database query?

▪ Throughput (≈ bandwidth)

• The total amount of work done in a given time

• How much work is getting done per unit time?

• What is the average execution rate?

▪ What if …

• We replace the processor with a faster version?

• We add more processors?

4190.308: Computer Architecture | Fall 2021 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 7

▪ Define

▪ “X is n times faster than Y”

▪ Example: time taken to run a program

• 10s on machine A, 15s on machine B

• Execution TimeB / Execution TimeA = 15s / 10s = 1.5

• Machine A is 1.5 times faster than machine B

𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 = Τ1 𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒

𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 𝑋

𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 𝑌
=

𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 𝑌

𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 𝑋
= 𝑛

4190.308: Computer Architecture | Fall 2021 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 8

▪ Elapsed time

• Total response time, including all aspects

– e.g., processing, I/O, OS overhead, idle time

• Determines system performance

▪ CPU time

• Time spent processing a given job

– Discounts I/O time, other jobs’ shares

• Comprises user CPU time and system CPU time

• Different programs are affected differently by CPU and system performance

▪ Our focus: User CPU time

4190.308: Computer Architecture | Fall 2021 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 9

▪ Operation of digital hardware governed by a constant-rate clock

▪ Clock period: duration of a clock cycle

• e.g., 250ps = 0.25ns = 250 x 10-12 s

▪ Clock frequency (rate): cycles per second

• e.g., 4.0GHz = 4000MHz = 4.0x109 Hz

Clock (cycles)

Data transfer
and computation

Update state

Clock period

4190.308: Computer Architecture | Fall 2021 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 10

▪ Performance improved by

• Reducing number of clock cycles

• Increasing clock rate (or decreasing the clock cycle time)

• Hardware designer must often trade off clock rate against cycle count

𝐶𝑃𝑈 𝑇𝑖𝑚𝑒 = 𝐶𝑃𝑈 𝐶𝑙𝑜𝑐𝑘 𝐶𝑦𝑐𝑙𝑒𝑠 × 𝐶𝑙𝑜𝑐𝑘 𝐶𝑦𝑐𝑙𝑒 𝑇𝑖𝑚𝑒

=
𝐶𝑃𝑈 𝐶𝑙𝑜𝑐𝑘 𝐶𝑦𝑐𝑙𝑒𝑠

𝐶𝑙𝑜𝑐𝑘 𝑅𝑎𝑡𝑒

4190.308: Computer Architecture | Fall 2021 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 11

▪ Computer A: 2GHz clock, 10s CPU time

▪ Designing Computer B

• Aim for 6s CPU time

• Can do faster clock, but causes 1.2x clock cycles

▪ How fast must Computer B’s clock be?

𝐶𝑙𝑜𝑐𝑘 𝑅𝑎𝑡𝑒𝐵 =
𝐶𝑙𝑜𝑐𝑘 𝐶𝑦𝑐𝑙𝑒𝑠𝐵
𝐶𝑃𝑈 𝑇𝑖𝑚𝑒𝐵

=
1.2 × 𝐶𝑙𝑜𝑐𝑘 𝐶𝑦𝑐𝑙𝑒𝑠𝐴

6𝑠
=
1.2 × 20 × 109

6𝑠
= 4𝐺𝐻𝑧

𝐶𝑙𝑜𝑐𝑘 𝐶𝑦𝑐𝑙𝑒𝑠𝐴 = 𝐶𝑃𝑈 𝑇𝑖𝑚𝑒𝐴 × 𝐶𝑙𝑜𝑐𝑘 𝑅𝑎𝑡𝑒𝐴 = 10𝑠 × 2𝐺𝐻𝑧 = 20 × 109

4190.308: Computer Architecture | Fall 2021 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 12

▪ Instruction count for a program

• Determined by program, ISA and compiler

▪ Average cycles per instruction

• Determined by CPU hardware

• If different instructions have different CPI, average CPI affected by instruction mix

𝐶𝑙𝑜𝑐𝑘 𝐶𝑦𝑐𝑙𝑒𝑠 = 𝐼𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 𝐶𝑜𝑢𝑛𝑡 × CPI (Cycles Per Instruction)

𝐶𝑃𝑈 𝑇𝑖𝑚𝑒 = 𝐼𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 𝐶𝑜𝑢𝑛𝑡 × CPI × 𝐶𝑙𝑜𝑐𝑘 𝐶𝑦𝑐𝑙𝑒 𝑇𝑖𝑚𝑒

=
𝐼𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 𝐶𝑜𝑢𝑛𝑡 × CPI

𝐶𝑙𝑜𝑐𝑘 𝑅𝑎𝑡𝑒

4190.308: Computer Architecture | Fall 2021 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 13

▪ Computer A: Cycle time = 250ps, CPI = 2.0

▪ Computer B: Cycle time = 500ps, CPI = 1.2

▪ Same ISA

▪ Which is faster, and by how much?

𝐶𝑃𝑈 𝑇𝑖𝑚𝑒𝐴 = 𝐼𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 𝐶𝑜𝑢𝑛𝑡 (𝐼𝐶) × 𝐶𝑃𝐼𝐴 × 𝐶𝑦𝑐𝑙𝑒 𝑇𝑖𝑚𝑒𝐴

= 𝐼𝐶 × 2.0 × 250𝑝𝑠 = 𝐼𝐶 × 500𝑝𝑠

𝐶𝑃𝑈 𝑇𝑖𝑚𝑒𝐵 = 𝐼𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 𝐶𝑜𝑢𝑛𝑡 (𝐼𝐶) × 𝐶𝑃𝐼𝐵 × 𝐶𝑦𝑐𝑙𝑒 𝑇𝑖𝑚𝑒𝐵

= 𝐼𝐶 × 1.2 × 500𝑝𝑠 = 𝐼𝐶 × 600𝑝𝑠

𝐶𝑃𝑈 𝑇𝑖𝑚𝑒𝐵
𝐶𝑃𝑈 𝑇𝑖𝑚𝑒𝐴

=
𝐼𝐶 × 600𝑝𝑠

𝐼𝐶 × 500𝑝𝑠
= 1.2 A is faster than B by 1.2 times

4190.308: Computer Architecture | Fall 2021 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 14

▪ If different instruction classes take different numbers of cycles

▪ Weighted average CPI

𝐶𝑙𝑜𝑐𝑘 𝐶𝑦𝑐𝑙𝑒𝑠 = ෍

𝑖=1

𝑛

(𝐶𝑃𝐼𝑖 × 𝐼𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 𝐶𝑜𝑢𝑛𝑡𝑖)

𝐶𝑃𝐼 =
𝐶𝑙𝑜𝑐𝑘 𝐶𝑦𝑐𝑙𝑒𝑠

𝐼𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 𝐶𝑜𝑢𝑛𝑡
= ෍

𝑖=1

𝑛

𝐶𝑃𝐼𝑖 ×
𝐼𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 𝐶𝑜𝑢𝑛𝑡𝑖
𝐼𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 𝐶𝑜𝑢𝑛𝑡

Relative frequency

4190.308: Computer Architecture | Fall 2021 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 15

▪ Alternative compiled code sequences A and B

▪ Sequence A: IC = 500

• Clock cycles

= 200 x 1 + 100 x 2 + 200 x 3

= 1000

• Average CPI = 1000 / 500 = 2.0

Class ALU Load/Store Branch

CPI for class 1 2 3

IC in sequence A 200 100 200

IC in sequence B 400 100 100

▪ Sequence B: IC = 600

• Clock cycles

= 400 x 1 + 100 x 2 + 100 x 3

= 900

• Average CPI = 900 / 600 = 1.5

4190.308: Computer Architecture | Fall 2021 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 16

void swap(long long v[], long long k)
{

long long temp;

temp = v[k];
v[k] = v[k+1];
v[k+1] = temp;

}

void sort(long long v[], size_t n)
{

size_t i, j;
for (i = 1; i < n; i++)

for (j = i - 1; j >= 0 && v[j] > v[j+1]; j--) {
swap(v, j);

}

4190.308: Computer Architecture | Fall 2021 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 17

▪ Compiled with gcc on Pentium 4 under Linux

0

0.5

1

1.5

2

2.5

3

none O1 O2 O3

Relative Performance

0
20000
40000
60000
80000

100000
120000
140000
160000
180000

none O1 O2 O3

Clock Cycles

0

20000

40000

60000

80000

100000

120000

140000

none O1 O2 O3

Instruction count

0

0.5

1

1.5

2

none O1 O2 O3

CPI

4190.308: Computer Architecture | Fall 2021 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 18

0

0.5

1

1.5

2

2.5

3

C/none C/O1 C/O2 C/O3 Java/int Java/JIT

Bubblesort Relative Performance

0

0.5

1

1.5

2

2.5

C/none C/O1 C/O2 C/O3 Java/int Java/JIT

Quicksort Relative Performance

0

500

1000

1500

2000

2500

3000

C/none C/O1 C/O2 C/O3 Java/int Java/JIT

Quicksort vs. Bubblesort Speedup

4190.308: Computer Architecture | Fall 2021 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 19

▪ Instruction count and CPI are not good performance indicators in

isolation

▪ Compiler optimizations are sensitive to the algorithm

▪ Java/JIT compiled code is significantly faster than JVM interpreted

• Comparable to optimized C in some cases

▪ Nothing can fix a dumb algorithm!

4190.308: Computer Architecture | Fall 2021 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 20

𝐶𝑃𝑈 𝑇𝑖𝑚𝑒 =
𝐼𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠

𝑃𝑟𝑜𝑔𝑟𝑎𝑚
×

𝐶𝑦𝑐𝑙𝑒𝑠

𝐼𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛
×
𝑆𝑒𝑐𝑜𝑛𝑑𝑠

𝐶𝑦𝑐𝑙𝑒

= 𝐼𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 𝐶𝑜𝑢𝑛𝑡 × 𝐶𝑃𝐼 × 𝐶𝑙𝑜𝑐𝑘 𝐶𝑦𝑐𝑙𝑒 𝑇𝑖𝑚𝑒

Instruction
Count

CPI Clock Cycle

Algorithm ○ △

Programming language ○ ○

Compiler ○ ○

ISA ○ ○ ○

Microarchitecture ○ ○

Technology ○

4190.308: Computer Architecture | Fall 2021 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 21

▪ MIPS (Millions of Instructions Per Second) doesn’t account for

• Differences in ISAs between computers

• Differences in complexity between instructions

• CPI varies between programs on a given CPU

𝑀𝐼𝑃𝑆 =
𝐼𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 𝑐𝑜𝑢𝑛𝑡

𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 × 106

=
𝐼𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 𝑐𝑜𝑢𝑛𝑡

𝐼𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 𝑐𝑜𝑢𝑛𝑡 × 𝐶𝑃𝐼
𝐶𝑙𝑜𝑐𝑘 𝑟𝑎𝑡𝑒

× 106
=

𝐶𝑙𝑜𝑐𝑘 𝑟𝑎𝑡𝑒

𝐶𝑃𝐼 × 106

Benchmarking

Chap. 1.9

4190.308: Computer Architecture | Fall 2021 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 23

▪ How to measure the performance?

• Performance best determined by running a real application

• Use programs typical of expected workload

▪ Small benchmarks

• Nice for architects and designers

• Easy to standardize

• Can be abused

4190.308: Computer Architecture | Fall 2021 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 24

▪ SPEC (Standard Performance Evaluation Corporation)

• A non-profit organization that aims to “produce, establish, maintain and endorse a

standardized set” of performance benchmarks for computers

• CPU, Power, HPC (High-Performance Computing), Web servers, Java, Storage, …

• http://www.spec.org

▪ SPEC CPU benchmark

• An industry-standardized, CPU-intensive benchmark suite, stressing a system’s

processor, memory subsystem and compiler

– Companies have agreed on a set of real program and inputs

– Valuable indicator of performance (and compiler technology)

• CPU89 → CPU92 → CPU95 → CPU2000 → CPU2006 → CPU2017

• Can still be abused

http://www.spec.org/

4190.308: Computer Architecture | Fall 2021 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 25

An embarrassed Intel Corp. acknowledged Friday that a bug in a software

program known as a compiler had led the company to overstate the speed of its

microprocessor chips on an industry benchmark by 10 percent. However,

industry analysts said the coding error…was a sad commentary on a common

industry practice of “cheating” on standardized performance tests…The error was

pointed out to Intel two days ago by a competitor, Motorola …came in a test

known as SPECint92…Intel acknowledged that it had “optimized” its compiler to

improve its test scores. The company had also said that it did not like the practice

but felt to compelled to make the optimizations because its competitors were

doing the same thing…At the heart of Intel’s problem is the practice of “tuning”

compiler programs to recognize certain computing problems in the test and then

substituting special handwritten pieces of code…

Saturday, January 6, 1996 New York Times

4190.308: Computer Architecture | Fall 2021 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 26

▪ Elapsed time to execute a selection of programs

• Negligible I/O, so focuses on CPU performance

▪ Normalize relative to reference machine

• Sun’s historical “Ultra Enterprise 2” introduced in 1997

• 296MHz UltraSPARC II processor

▪ Summarize as geometric mean of performance ratios

• CINT2006: 12 integer programs written in C and C++

• CFP2006: 17 FP programs written in Fortran and C/C++

𝑛

ෑ

𝑖=1

𝑛

𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 𝑟𝑎𝑡𝑖𝑜 𝑖

4190.308: Computer Architecture | Fall 2021 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 27

Integer Benchmarks (CINT2006) Floating Point Benchmarks (CFP2006)

perlbench C Perl programming language bwaves Fortran Fluid dynamics

bzip2 C Compression gamess Fortran Quantum chemistry

gcc C C compiler milc C Physics: Quantum chromodynamics

mcf C Combinatorial optimization zeusmp Fortran Physics / CFD

gobmk C Artificial intelligence: Go gromacs C/Fortran Biochemistry / Molecular dynamics

hmmer C Search gene sequence cactusADM C/Fortran Physics / General relativity

sjeng C Artificial intelligence: Chess leslie3d Fortran Fluid dynamics

libquantum C Physics: Quantum computing namd C++ Biology / Molecular dynamics

h264ref C Video compression dealII C++ Finite element analysis

omnetpp C++ Discrete event simulation soplex C++ Linear programming, optimization

astar C++ Path-finding algorithms povray C++ Image ray-tracing

xalancbmk C++ XML processing calculix C/Fortran Structural mechanics

GemsFDTD Fortran Computational electromagnetics

tonto Fortran Quantum chemistry

lbm C Fluid dynamics

wrf C/Fortran Weather prediction

sphinx3 C Speech recognition

4190.308: Computer Architecture | Fall 2021 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 28

4190.308: Computer Architecture | Fall 2021 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 29

▪ Performance is specific to a particular program(s)

• Total execution time is a consistent summary of the performance

▪ For a given architecture, performance increases come from

• Increases in clock rate (without adverse CPI effects)

• Improvements in processor organization that lower CPI

• Compiler enhancements that lower CPI and/or instruction count

• Algorithm/language choices that affect instruction count

▪ Pitfall: Using a subset of the performance equation as a performance

metric

