Jin-Soo Kim
(jinsoo.kim@snu.ac.kr)

Systems Software &
Architecture Lab.

Seoul National University

Fall 2021

Performance

CPU Performance

Chap. 1.6,2.13

Performance Issues

Measure, analyze, report, and summarize
Make intelligent choices
See through the marketing hype

Key to understanding underlying organizational motivation

Questions
* Why is some hardware better than others for different programs?

* What factors of system performance are hardware related?
(e.g., Do we need a new machine or a new operating system?)

* How does the machine’s instruction set affect performance!

Understanding Performance

= Algorithm

* Determines number of operations executed

* Programming language, compiler, architecture

* Determine number of machine instructions executed per operation

" Processor and memory system (microarchitecture)

e Determine how fast instructions are executed

= |/O system (including OS)

* Determines how fast |/O operations are executed

Defining Performance

Which airplane has the best performance!

Boeing 777
Boeing 747
BAC/Sud Concorde

Douglas DC-8-50

Boeing 777
Boeing 747
BAC/Sud Concorde

Douglas DC-8-50

B Cruising Speed (mph)

H Passengers x mph

0 100 200 300 400 500 0 2000 4000 6000 8000 10000
W Passenger Capacity B Cruising Range (miles)
Boeing 777 Boeing 777
Boeing 747 Boeing 747
BAC/Sud Concorde BAC/Sud Concorde
Douglas DC-8-50 Douglas DC-8-50
6 560 1000 1500 6 10(;000 20(;000 300000 400000

Performance Metric

= Response time (= execution time, latency)
* The time between the start and completion of a task
* How long does it take for my job to run?
* How long must | wait for the database query!?

* Throughput (= bandwidth)
* The total amount of work done in a given time
* How much work is getting done per unit time!?

* What is the average execution rate?

= What if ...

* We replace the processor with a faster version!?

* We add more processors?

4190.308: Computer Architecture | Fall 2021 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

Relative Performance

" Define
Performance = 1/Execution Time

= “Xis n times faster thanY”

Performance y =~ Execution time y
_ —n

Performancey Execution time yx

* Example: time taken to run a program
* |0s on machine A, I5s on machine B
* Execution Timeg / Execution Time, = I5s/ 10s = 1.5
* Machine A is 1.5 times faster than machine B

Measuring Execution Time

* Flapsed time

* Total response time, including all aspects
— e.g., processing, /O, OS overhead, idle time

* Determines system performance

= CPU time
* Time spent processing a given job
— Discounts I/O time, other jobs’ shares

* Comprises user CPU time and system CPU time

* Different programs are affected differently by CPU and system performance

= Qur focus: User CPU time

4190.308: Computer Architecture | Fall 2021 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

CPU Clocking

* Operation of digital hardware governed by a constant-rate clock

«—Clock period—

Clock (cycles)

and computation

Update state . . .

* Clock period: duration of a clock cycle
* e.g.,250ps = 0.25ns = 250 x 10-'% s

* Clock frequency (rate): cycles per second
* e.g.,4.0GHz = 4000MHz = 4.0x10° Hz

CPU Time

CPU Time = CPU Clock Cycles X Clock Cycle Time

CPU Clock Cycles
Clock Rate

* Performance improved by
* Reducing number of clock cycles

* Increasing clock rate (or decreasing the clock cycle time)

* Hardware designer must often trade off clock rate against cycle count

4190.308: Computer Architecture | Fall 2021 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

10

CPU Time Example

= Computer A: 2GHz clock, 10s CPU time
" Designing Computer B
* Aim for 6s CPU time

* Can do faster clock, but causes |.2x clock cycles

* How fast must Computer B’s clock be?

Clock Cycles, = CPU Timey X Clock Rate, = 10s X 2GHz = 20 x 10°

Clock Cyclesy 1.2 X Clock Cycles, 1.2 x 20 X 10”

= 4GH
CPU Timeg 6S 6s z

Clock Rateg =

11

Instruction Count and CPU

Clock Cycles = Instruction Count X CPI (Cycles Per Instruction)
CPU Time = Instruction Count X CPI X Clock Cycle Time

B Instruction Count X CPI
B Clock Rate

" |nstruction count for a program

* Determined by program, ISA and compiler

" Average cycles per instruction
* Determined by CPU hardware

* If different instructions have different CPI, average CPI affected by instruction mix

4190.308: Computer Architecture | Fall 2021 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

12

CPl Example

= Computer A: Cycle time = 250ps, CPl = 2.0
= Computer B: Cycle time = 500ps, CPI = 1.2
= Same ISA

* Which is faster, and by how much?

CPU Timey, = Instruction Count (IC) X CPI, X Cycle Time,
= IC X 2.0 X 250ps = IC X 500ps
CPU Timeg = Instruction Count (IC) X CPIg X Cycle Timeg

= IC X 1.2 X 500ps = IC X 600ps

CPUTimegp IC X 600ps
CPU Time, IC x500ps

1.2 A is faster than B by 1.2 times

13

CPl in More Detail

* [f different instruction classes take different numbers of cycles

n

Clock Cycles = E(CPIL- X Instruction Count;)
i=1

" Weighted average CPI

Clock Cycles - Instruction Count;
Instruction Count s Instruction Count
1=
— _/
YT

Relative frequency

14

CPIl Example

" Alternative compiled code sequences A and B

Class ALU Load/Store Branch
CPI for class 1 2 3
IC in sequence A 200 100 200
IC in sequence B 400 100 100
= Sequence A: |C =500 = Sequence B: IC =600
* Clock cycles * Clock cycles

=200x 1 +100x 2 + 200 x 3 =400x I + 100 x2 + 100 x 3
= 1000 =900

* Average CPI = 1000/ 500 = 2.0 * Average CPI =900/600 = 1[.5

C Sort Example (Revisited)

void swap(long long v[], long long k)

{
long long temp;

temp = v[k];

vik] = v[k+1];

v[ik+1l] = temp;
}

void sort(long long v[], size t n)

{
size t i, j;
for (1 =1; i < n; i++)
for (j =1 -1; j >=0 && v[j] > v[j+1]; j--) {
swap(v, J);

Effect of Compiler Optimization

* Compiled with gcc on Pentium 4 under Linux

3
2.5
2
1.5
1
0.5
0

180000
160000
140000
120000
100000
80000
60000
40000
20000
0

M Relative Performance

none

none

4190.308: Computer Architecture | Fall 2021 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

o1 02 03
B Clock Cycles
o1 02 03

140000

@ Instruction count

120000
100000

80000

60000
40000

20000

0
none

o1 02 o3

ECPI

1.5

0.5

none

o1 02

Effect of Language and Algorithm

3 HE Bubblesort Relative Performance
25
2
1.5
1
(] . . . — D
C/none C/01 C/02 C/03 Java/int Java/JIT
25 B Quicksort Relative Performance
2
1.5
1
0 | | | | .
C/none C/01 C/02 C/03 Java/int Java/JIT
3000 E Quicksort vs. Bubblesort Speedup
2500
2000
1500
1000
500 .
0 , , , , B
C/none C/01 C/02 C/03 Java/int Java/JIT

4190.308: Computer Architecture | Fall 2021 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

L essons

" |nstruction count and CPI are not good performance indicators in
isolation

* Compiler optimizations are sensitive to the algorithm

* Java/JIT compiled code is significantly faster than JVM interpreted

* Comparable to optimized C in some cases

* Nothing can fix a dumb algorithm!

19

_ Instructions Cycles Seconds
CPU Time =

X X
Program Instruction Cycle

= Instruction Count X CPI X Clock Cycle Time

Instruction
Clock Cycle
_-

Algorithm JAN
Programming language O O
Compiler O O

ISA O O

O

Microarchitecture

O O O

Technology

Fallacy: MIPS as a Performance Metric

= MIPS (Millions of Instructions Per Second) doesn’t account for
* Differences in ISAs between computers

* Differences in complexity between instructions

Instruction count

MIPS =
Execution time X 10°
B Instruction count B Clock rate
— Instruction count X CPI « CPI x 10°
X 10
Clock rate

* CPI varies between programs on a given CPU

4190.308: Computer Architecture | Fall 2021 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 21

Benchmarking

Chap. 1.9

Benchmarks

* How to measure the performance!
* Performance best determined by running a real application

* Use programs typical of expected workload

* Small benchmarks
* Nice for architects and designers

* Easy to standardize
e Can be abused

4190.308: Computer Architecture | Fall 2021 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

23

SPEC CPU Benchmark

* SPEC (Standard Performance Evaluation Corporation)

* A non-profit organization that aims to “produce, establish, maintain and endorse a
standardized set” of performance benchmarks for computers

* CPU, Power, HPC (High-Performance Computing),VVeb servers, Java, Storage, ...
* http://www.spec.org

= SPEC CPU benchmark

* An industry-standardized, CPU-intensive benchmark suite, stressing a system’s
processor, memory subsystem and compiler

— Companies have agreed on a set of real program and inputs
— Valuable indicator of performance (and compiler technology)

« CPU89 - CPU92 - CPU95 - CPU2000 - CPU2006 - CPU2017
e Can still be abused

4190.308: Computer Architecture | Fall 2021 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 24

http://www.spec.org/

Benchmark Games

An embarrassed Intel Corp. acknowledged Friday that a bug in a software

program known as a compiler had led the company to overstate the speed of its
microprocessor chips on an industry benchmark by 10 percent. However,
industry analysts said the coding error...was a sad commentary on a common
industry practice of “cheating” on standardized performance tests...The error was
pointed out to Intel two days ago by a competitor, Motorola ...came in a test
known as SPECintg2...Intel acknowledged that it had “optimized” its compiler to
improve its test scores. The company had also said that it did not like the practice
but felt to compelled to make the optimizations because its competitors were
doing the same thing...At the heart of Intel’s problem is the practice of “tuning”
compiler programs to recognize certain computing problems in the test and then
substituting special handwritten pieces of code...

Saturday, January 6, 1996 New York Times

N
52

SPEC CPU2006

* Elapsed time to execute a selection of programs

* Negligible I/O, so focuses on CPU performance

* Normalize relative to reference machine

* Sun’s historical “Ultra Enterprise 2" introduced in 1997
* 296MHz UltraSPARC |l processor

" Summarize as geometric mean of performance ratios
* CINT2006: 12 integer programs written in C and C++
 CFP2006: |7 FP programs written in Fortran and C/C++

n
‘ ‘ Execution time ratio ;
i=1

26

SPEC CPU2006 Suites

perlbench C Perl programming language bwaves Fortran Fluid dynamics
bzip2 C Compression gamess Fortran Quantum chemistry
gcc C C compiler milc C Physics: Quantum chromodynamics
mcf C Combinatorial optimization zeusmp Fortran Physics / CFD
gobmk C Artificial intelligence: Go gromacs C/Fortran Biochemistry / Molecular dynamics
hmmer C Search gene sequence cactusADM C/Fortran Physics / General relativity
sjeng C Artificial intelligence: Chess leslie3d Fortran Fluid dynamics
libguantum C Physics: Quantum computing namd C++ Biology / Molecular dynamics
h264ref C Video compression dealll C++ Finite element analysis
omnetpp C++ Discrete event simulation soplex C++ Linear programming, optimization
astar C++ Path-finding algorithms povray C++ Image ray-tracing
xalancomk C++ XML processing calculix C/Fortran Structural mechanics
GemsFDTD Fortran Computational electromagnetics
tonto Fortran Quantum chemistry
lbm C Fluid dynamics
wrf C/Fortran Weather prediction

sphinx3 C Speech recognition

CINT2006 for Intel Core i7 920

Execution

Reference

Instruction Clock cycle time Time Time

Count x 10° (seconds x 10-9) | (seconds) | (seconds) | SPECratlo
Interpreted string processing | perl 2252 0.60 0.376 508 Q770 19.2
Block-sorting bzip2 2390 0.70 0.376 529 2850 15.4
compraession
GNU C compiler geo 794 1.20 0.376 358 8050 22.5
Combinatorial optimization mcf 221 2.66 0.376 221 9120 41.2
Go game (Al) go 1274 1.10 0.376 527 10490 19.9
Search gene sequence himmer 2616 0.60 0.376 590 9330 15.8
Chess game (Al) sjeng 1948 .80 0.376 D86 12100 20.7
Quantum computer libquantum 659 0.44 0.376 109 20720 190.0
simulation
Video compression h264avc 3793 0.50 0.376 713 22130 31.0
Discrete event omnetpp 367 2.10 0.376 290 6250 21.5
simulation library
Games/path finding astar 1250 1.00 0.376 470 7020 14.9
AML parsing xalanchmk 1045 0.70 0.376 275 6200 251
Geometric mean - - - - - - 20.7

4190.308: Computer Architecture | Fall 2021 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

28

Summary

* Performance is specific to a particular program(s)

* Total execution time is a consistent summary of the performance

" For a given architecture, performance increases come from
* Increases in clock rate (without adverse CPI effects)
* Improvements in processor organization that lower CPI
* Compiler enhancements that lower CPIl and/or instruction count

* Algorithm/language choices that affect instruction count

= Pitfall: Using a subset of the performance equation as a performance
metric

29

