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Course Information

" Schedule
* 14:00 — 15:15 (Tuesday & Thursday)

* Lecture room: Engineering Bldg—#302-208 (Online lecture using Zoom)

* 3 credits
* Official language: English

* TAs: Jaechoon Shim, Ikjoon Son, Seongyeop Jeong

* SNU eTL system for exam/project scores

* http://csl.snu.ac.kr/courses/4190.308/2021-2/ for announcements and
ecture slides

" http://sys.snu.ac.kr for project submissions and automatic grading


http://csl.snu.ac.kr/courses/4190.308/2021-2/
http://sys.snu.ac.kr/

About Me

3 YouTube
= |in-Soo Kim (Z2l)

MO At
* Professor @ CSE Dept. 11 subscribers

* Systems Software & Architecture Laboratory

* Operating systems, storage systems, parallel and distributed computing, embedded
systems, ...

* E-mail: jinsoo.kim@snu.ac.kr
= Tel: 02-880-7302
= Office: Engineering Bldg. #301-504 (office hours:Tuesday & Thursday)

" The best way to contact me is by email


mailto:jinsoo.kim@snu.ac.kr

Myths About This Course

" |t’s an introductory course

* Introduction to Computers?! NO!
* Past records show that about 20% of students have dropped every semester

= |t’s all about hardware

* NO! It’s about how to separate work between software and hardware, and about
how to design the interface between them

" |t’s not relevant for software engineers

* NO! Writing good software requires understanding details of underlying
implementation

* Who needs to know the assembly language these days?

* Well, you'll see...
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Prerequisites

" Prerequisites
* Programming Practice (4190.103A) — C programming
* Logic Design (M1522.000700) — Must!
* Data Structure (M1522.000900) — Recommended

" You should be familiar with the followings:
 Shells and basic Linux commands
* C and Python programming skills
* Basic knowledge on digital circuits and systems

= Accessible Linux (Ubuntu 18.04.3 LTS or later) or MacOS machine



Check Yourself: Logic Design

" You should be able to understand how the following circuit works
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Check Yourself: C & Linux

= Bit manipulations

= Pointers

* Linux development tools

int f(int x) {
return (x >> 8) & ox1f;
}

int g(float x) {
return *((int *

}

$ make
$ gcc -02 -g -0 abc abc.c




Check Yourself: Python

" We are using a CPU simulator (called pyrisc) written in Python
* Why!? Because it is a lot easier than Verilog...

* If you haven't heard of Verilog, then think again...

* Pyrisc is available at https://github.com/snu-csl/pyrisc “01
we"
" You need to change the internals of the simulator in oﬂg O project

aSSIgnments
def gen(self, inst):

° LjStS? from datapath import Pipe, EX, MM, WB
o [). ti ‘) opcode = RISCV.opcode(inst)
ICtionaries: if opcode in [ EBREAK, ECALL ]:
) Pipe.ID.exception |= EXC_EBREAK
¢ Tuples. elif opcode == ILLEGAL:

Pipe.ID.exception |= EXC_ILLEGAL_INST
inst = BUBBLE
opcode = RISCV.opcode(inst)



https://github.com/snu-csl/pyrisc

A Gentle Reminder

* |f you feel that you are not ready yet, then take this course later.
Again, remember this is NOT an introductory course!

* |t's CSE department's policy that all major/minor students can take the
required course whenever you want!

= So, there is no need to rush



Textbook

= Computer Organization and Design:

The Hardware/Software Interface
(RISC-V Edition)

* David A. Patterson and John L. Hennessy
(Turing Award Recipients in 2017)

* First Edition

* Morgan Kaufmann, 2017
* http://booksite.elsevier.com/9780128122754/

e Note: There are also MIPS and ARM editions

11


http://booksite.elsevier.com/9780128122754/

Topics

" |ntroduction to Computer Architecture
" |ntegers

" Floating Points

= RISC-V Instruction Set Architecture

" Sequential Architecture

* Pipelined Architecture

= Cache

" Virtual memory
= |/O



Project Topics (subject to change)

= C programming

= RISC-V assembly programming

* Designing pipelined processor

= Optimizing RISC-V assembly programs for pipelined processor

= Cache simulation



Grading Policy (subject to change)

= Exams: 60%
 Midterm: 25%
* Final: 35%

" Projects: 40%

= University policy requires students to attend at least 2/3 of the
scheduled classes. Otherwise, you'll fail this course.

" We are using the electronic attendance system via eTL

= Also, if you miss one of the exams, you'll fail this course



Cheating Policy

* What is cheating!

* Copying another student’s solution (or one from the Internet) and submitting it as
your own

* Allowing another student to copy your solution

* What is NOT cheating?

* Helping others use systems or tools
* Helping others with high-level design issues
* Helping others debug their code

" Penalty for cheating
* Severe penalty on the grade (F) and report to the dept. chair
* Ask helps to your TA or instructor if you experience any difficulty!

4190.308: Computer Architecture | Fall 2021 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)
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What and Why!?




Example #1:Int’s # Integers, Float’s # Reals

= s x?22=0?
* Float’s: 7?
’ int x = 50000;
* Int’s: ?? printf (“%s\n”, (x*x >= 0)? “Yes” : “No”);

" |s(x+y)+tz==x+(y+ z)!
* Unsigned & Signed Int’s: ??

* Float’s: ??
float x = 1e20, y = -1e20, z = 3.14;
printf (“%s\n”, (x+y)+z==x+(y+z)? “Yes” : “No”);

4190.308: Computer Architecture | Fall 2021 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)
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Example #2: More Than Just GHz

CPU Clock SPECint2000 SPECfp2000
Speed
Athlon 64 FX-55 2.6GHz 1854 1782
Pentium 4 Extreme Edition 3.46GHz 1772 1724
Pentium 4 Prescott 3.8GHz 1671 1842
Opteron 150 2.4GHz 1655 1644
Itanium 2 9MB 1.6GHz 1590 2712
Pentium M 755 2.0GHz 1541 1088
POWERS5 1.9GHz 1452 2702
SPARC64 V 1.89GHz 1345 1803
Athlon 64 3200+ 2.2GHz 1080 1250
Alpha 21264C 1.25GHz 928 1019

I— Higher is better J
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Example #3: Constant Factors Matter

* There’s more to performance than asymptotic complexity

= Array copy example

{
int i, j;
for (i = 9; 1 < 2048; i++)

void copyij (int src[2048][2048],
int dst[2048][2048])

for (j = @; j < 2048; j++)
dst[i][]j] = src[i][]];

4.3 ms

void copyji (int src[2048][2048],
int dst[2048][2048])
{
int i, j;
for (j = 0; j < 2048; j++)
for (i = 0; 1 < 2048; i++)
dst[i][j] = src[i][]];

81.8 ms

copyji() is 20x slower on 2.0GHz Intel Core i7 Haswell. Why?




What You Will Learn

* How to represent data

* How programs are translated into the machine language

* And how the hardware executes them
* The hardware/software interface — Instruction Set Architecture (ISA)
* What determines program performance

* How hardware designers / software developers improve performance

" What is parallel processing
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https://www.youtube.com/watch?v=DSw3IwsgNnc

Why Take This Course!?

* To graduate!

* To design the next great instruction set! Well...
* ISA has largely converged, especially in desktop / server / laptop / mobile space
* Dictated by powerful market forces (Intel/ARM and RISC-V?)

* To get a job in Intel, NVIDIA,ARM, Apple, Qualcomm, Google, Tesla, ...
e Still tremendous innovations!

= Design, analysis, and implementation concepts that you'll learn are vital
to all aspects of computer science and engineering

* This course will equip you with an intellectual toolbox for dealing with a
host of systems design challenges

= And finally, just for fun!
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Summary

* Modern Computer Architecture is about managing and optimizing across
several levels of abstraction w.r.t. dramatically changing technology and
application load

* This course focuses on
* RISC-V Instruction Set Architecture (ISA) —A new open interface
* An implementation based on Pipelining (Microarchitecture) — how to make it faster?
* Memory hierarchy — How to make trade-offs between performance and cost!?

* Understanding Computer Architecture is vital to other “systems” courses:

* System programming, Operating systems, Compilers, Embedded systems, Computer
networks, Multicore computing, Distributed systems, Mobile computing, Security,
Machine learning, Quantum computing, etc.
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