Jin-Soo Kim
(jinsoo.kim@snu.ac.kr)

Systems Software &
Architecture Lab.

Seoul National University

Fall 2021

4190.308:
Computer Architecture

Course Information

" Schedule
* 14:00 — 15:15 (Tuesday & Thursday)

* Lecture room: Engineering Bldg—#302-208 (Online lecture using Zoom)

* 3 credits
* Official language: English

* TAs: Jaechoon Shim, Ikjoon Son, Seongyeop Jeong

* SNU eTL system for exam/project scores

* http://csl.snu.ac.kr/courses/4190.308/2021-2/ for announcements and
ecture slides

" http://sys.snu.ac.kr for project submissions and automatic grading

http://csl.snu.ac.kr/courses/4190.308/2021-2/
http://sys.snu.ac.kr/

About Me

3 YouTube
= |in-Soo Kim (Z2l)

MO At
* Professor @ CSE Dept. 11 subscribers

* Systems Software & Architecture Laboratory

* Operating systems, storage systems, parallel and distributed computing, embedded
systems, ...

* E-mail: jinsoo.kim@snu.ac.kr
= Tel: 02-880-7302
= Office: Engineering Bldg. #301-504 (office hours:Tuesday & Thursday)

" The best way to contact me is by email

mailto:jinsoo.kim@snu.ac.kr

Myths About This Course

" |t’s an introductory course

* Introduction to Computers?! NO!
* Past records show that about 20% of students have dropped every semester

= |t’s all about hardware

* NO! It’s about how to separate work between software and hardware, and about
how to design the interface between them

" |t’s not relevant for software engineers

* NO! Writing good software requires understanding details of underlying
implementation

* Who needs to know the assembly language these days?

* Well, you'll see...

ere Are We!?

prerequisite relations among courses

1-1st Semester 1-2nd Semester 2-1%t Semester
Computer) - .
Basics and Programming omputer
Practice Practice Programming
Information
communication
convergence
Discrete
Mathematics
Engineering

Mathematics 1

Logic Design

2-2" Semester

Programming
Principles

Data
Structure

Engineering
Mathematics 2

Electrical-
Electronic

Computer
Architecture

M Requisite
Liberal Arts

3-15t Semester

Automata
Theory

Algorithm

Linear and
Non-Linear
Computational
model

Digital Signal
Processing

System
Programming

B Requisite Major M Elective

B Requisite
by regulation Major

Major

3-2d Semester 4t Grade

. Topics in Computer New
Programming Technology
Language

Software Engineering,

Principles and
Software Application

Practices of
Software

Development Human-Computer

Interaction
Introduction of Understanding Block Chin,
IT Start-up Internet Security
Compiler

Data Base Computer Convergence
Application
Computer Network,

Data
Social Network Analysis

Communication

Introduction of
Data Mining

Computer Graphics

Quantum Computing and
Introduction of Information

Al, Introduction of

Machine Learning,

Computer Vision,
Deep Learning Principles

ngssi;onrlle Capstone Design2
Embedded System and
Application,
Computer Modelling,
Mobile Computing and
Application

Hardware
System design

Operating q
System Computer Security

Multi-core computing

https:

cse.snu.ac.kr/en/page/degree-requirements

5

https://cse.snu.ac.kr/en/page/degree-requirements

Prerequisites

" Prerequisites
* Programming Practice (4190.103A) — C programming
* Logic Design (M1522.000700) — Must!
* Data Structure (M1522.000900) — Recommended

" You should be familiar with the followings:
 Shells and basic Linux commands
* C and Python programming skills
* Basic knowledge on digital circuits and systems

= Accessible Linux (Ubuntu 18.04.3 LTS or later) or MacOS machine

Check Yourself: Logic Design

" You should be able to understand how the following circuit works
Sebuble MM.bubble
B.stall ID.bubble
IF.stall "
Ay =
exception - exception exception »O & exception
Control _ t _
c_rf_wen criwen [EIS
_1@ ol mem :::m ‘%‘- — o“e‘
R B == A B2\ ¢
#»|rs2 rs2_datal— . alu_out = \~ ‘ ‘\a
register [|77 ¢ . \\ ‘e
1| L | (o
‘:g 1l opl data l\ e 5 “

op2_data

wen|
4 rs2_data

x CZ)

ALU nljl addr dnfem

wdata

The PyRISC Project
SNURISC5 Diagram

() https://github.com;s |/pyi

MM.whdata

pcplusd

WB.rd EX.alu_out

WB.whdata

EX.brjmp_target

EX.jump_reg_target

Check Yourself: C & Linux

= Bit manipulations

= Pointers

* Linux development tools

int f(int x) {
return (x >> 8) & ox1f;
}

int g(float x) {
return *((int *

}

$ make
$ gcc -02 -g -0 abc abc.c

Check Yourself: Python

" We are using a CPU simulator (called pyrisc) written in Python
* Why!? Because it is a lot easier than Verilog...

* If you haven't heard of Verilog, then think again...

* Pyrisc is available at https://github.com/snu-csl/pyrisc “01
we"
" You need to change the internals of the simulator in oﬂg O project

aSSIgnments
def gen(self, inst):

° LjStS? from datapath import Pipe, EX, MM, WB
o [). ti ‘) opcode = RISCV.opcode(inst)
ICtionaries: if opcode in [EBREAK, ECALL]:
) Pipe.ID.exception |= EXC_EBREAK
¢ Tuples. elif opcode == ILLEGAL:

Pipe.ID.exception |= EXC_ILLEGAL_INST
inst = BUBBLE
opcode = RISCV.opcode(inst)

https://github.com/snu-csl/pyrisc

A Gentle Reminder

* |f you feel that you are not ready yet, then take this course later.
Again, remember this is NOT an introductory course!

* |t's CSE department's policy that all major/minor students can take the
required course whenever you want!

= So, there is no need to rush

Textbook

= Computer Organization and Design:

The Hardware/Software Interface
(RISC-V Edition)

* David A. Patterson and John L. Hennessy
(Turing Award Recipients in 2017)

* First Edition

* Morgan Kaufmann, 2017
* http://booksite.elsevier.com/9780128122754/

e Note: There are also MIPS and ARM editions

11

http://booksite.elsevier.com/9780128122754/

Topics

" |ntroduction to Computer Architecture
" |ntegers

" Floating Points

= RISC-V Instruction Set Architecture

" Sequential Architecture

* Pipelined Architecture

= Cache

" Virtual memory
= |/O

Project Topics (subject to change)

= C programming

= RISC-V assembly programming

* Designing pipelined processor

= Optimizing RISC-V assembly programs for pipelined processor

= Cache simulation

Grading Policy (subject to change)

= Exams: 60%
 Midterm: 25%
* Final: 35%

" Projects: 40%

= University policy requires students to attend at least 2/3 of the
scheduled classes. Otherwise, you'll fail this course.

" We are using the electronic attendance system via eTL

= Also, if you miss one of the exams, you'll fail this course

Cheating Policy

* What is cheating!

* Copying another student’s solution (or one from the Internet) and submitting it as
your own

* Allowing another student to copy your solution

* What is NOT cheating?

* Helping others use systems or tools
* Helping others with high-level design issues
* Helping others debug their code

" Penalty for cheating
* Severe penalty on the grade (F) and report to the dept. chair
* Ask helps to your TA or instructor if you experience any difficulty!

4190.308: Computer Architecture | Fall 2021 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

15

What and Why!?

Example #1:Int’s # Integers, Float’s # Reals

= s x?22=0?
* Float’s: 7?
’ int x = 50000;
* Int’s: ?? printf (“%s\n”, (x*x >= 0)? “Yes” : “No”);

" |s(x+y)+tz==x+(y+ z)!
* Unsigned & Signed Int’s: ??

* Float’s: ??
float x = 1e20, y = -1e20, z = 3.14;
printf (“%s\n”, (x+y)+z==x+(y+z)? “Yes” : “No”);

4190.308: Computer Architecture | Fall 2021 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

17

Example #2: More Than Just GHz

CPU Clock SPECint2000 SPECfp2000
Speed
Athlon 64 FX-55 2.6GHz 1854 1782
Pentium 4 Extreme Edition 3.46GHz 1772 1724
Pentium 4 Prescott 3.8GHz 1671 1842
Opteron 150 2.4GHz 1655 1644
Itanium 2 9MB 1.6GHz 1590 2712
Pentium M 755 2.0GHz 1541 1088
POWERS5 1.9GHz 1452 2702
SPARC64 V 1.89GHz 1345 1803
Athlon 64 3200+ 2.2GHz 1080 1250
Alpha 21264C 1.25GHz 928 1019

I— Higher is better J

18

Example #3: Constant Factors Matter

* There’s more to performance than asymptotic complexity

= Array copy example

{
int i, j;
for (i = 9; 1 < 2048; i++)

void copyij (int src[2048][2048],
int dst[2048][2048])

for (j = @; j < 2048; j++)
dst[i][]j] = src[i][]];

4.3 ms

void copyji (int src[2048][2048],
int dst[2048][2048])
{
int i, j;
for (j = 0; j < 2048; j++)
for (i = 0; 1 < 2048; i++)
dst[i][j] = src[i][]];

81.8 ms

copyji() is 20x slower on 2.0GHz Intel Core i7 Haswell. Why?

What You Will Learn

* How to represent data

* How programs are translated into the machine language

* And how the hardware executes them
* The hardware/software interface — Instruction Set Architecture (ISA)
* What determines program performance

* How hardware designers / software developers improve performance

" What is parallel processing

20

7,1 .1 EFLOP (BF16/CFP8) Uniform High BW
120 hAlNlNG TILES. ‘| 3000 D1 CHIPS | >IM TRAINING NODES & Low- Latency Fa bri

L o - s W A% m m - a-a a - a_ & 2]
FEEESEESESREEEEEBRES
P L e et
$EEE SRS EEE SR
iR RS 2
RS 645mm
EESRERIEEABIE st oo e s
P S P B
LSS RS RS SRR

mli'l'ﬂﬂli-.!'“'l'ﬁm » 50 Billion

Fetch SMTx4

VLl

—

(38 S=p 3 2 op D= e BS54
Bl 22 =i de 2o Lo a8 i
(2og L8 3 3oy [g Bl B-Eg
FERE e RE ’E'E“
35g e U 2ay U1 B
PR B
EED ﬁ el E'I‘B EdE

SMT Vector Scheduler

!

SMT Vector Scheduler

I !

SIMD MatMul
Datapath x4

11+ Miles

Training Node (1 TFLOPS — BF16) D1 Chip (354 nodes)

https://www.youtube.com/watch?v=DSw3lwsgNnc

https://www.youtube.com/watch?v=DSw3IwsgNnc

Why Take This Course!?

* To graduate!

* To design the next great instruction set! Well...
* ISA has largely converged, especially in desktop / server / laptop / mobile space
* Dictated by powerful market forces (Intel/ARM and RISC-V?)

* To get a job in Intel, NVIDIA,ARM, Apple, Qualcomm, Google, Tesla, ...
e Still tremendous innovations!

= Design, analysis, and implementation concepts that you'll learn are vital
to all aspects of computer science and engineering

* This course will equip you with an intellectual toolbox for dealing with a
host of systems design challenges

= And finally, just for fun!

22

Summary

* Modern Computer Architecture is about managing and optimizing across
several levels of abstraction w.r.t. dramatically changing technology and
application load

* This course focuses on
* RISC-V Instruction Set Architecture (ISA) —A new open interface
* An implementation based on Pipelining (Microarchitecture) — how to make it faster?
* Memory hierarchy — How to make trade-offs between performance and cost!?

* Understanding Computer Architecture is vital to other “systems” courses:

* System programming, Operating systems, Compilers, Embedded systems, Computer
networks, Multicore computing, Distributed systems, Mobile computing, Security,
Machine learning, Quantum computing, etc.

23

