
Sunmin Jeong, Injae Kang

(snucsl.ta@gmail.com)

Systems Software &
Architecture Lab.

Seoul National University

Fall 2020

4190.308:

Computer Architecture

Lab. 4

SNURISC-SEQ

3

Get the instruction

indicated by pc

Get values

required for instruction

Perform computation

Access data memory

Write back data

to register file

SNURISC5

5

▪ A 5-stage pipelined RISC-V Simulator

▪ It consists of

• IF: Instruction fetch

• ID: Instruction decode & register read

• EX: Execute

• MM: Memory access

• WB: Writeback
IF ID EX MM WB

IF ID EX MM WB

IF ID EX MM WB

6

IF ID EX MM WB

Data forwarding is handled

In the ID stage
Data is written to the register file

at the end of WB stage

→ Forwarding from WB to ID should be handled

The branch outcome is determined

at the end of EX stage

Forwarding
detection

& resolution

SNURISC6

8

▪ A 6-stage pipelined RISC-V Simulator

▪ It consists of

• IF

• ID : Instruction decode

• RR : Register read

• EX

• MM

• WB

ID stage in traditional 5-stage pipeline

is divided into two stages

IF ID RR EX MM WB

IF ID RR EX MM WB

IF ID RR EX MM WB

9

Stage Task

IF Fetch an instruction from imem (instruction memory)

ID
Decode the instruction

Prepare immediate values

RR Read the register file

EX
Perform arithmetic/logical computation

Determine the branch outcome

MM Access dmem (data memory), if necessary

WB Write back the result to the register file

10

Stall
detection

Forwarding
detection

& resolution

Data is written to the register file

at the end of WB stage

→ Forwarding from WB to RR should be handled

The branch outcome is determined

at the end of EX stage

Control logic is located

in the ID stage

Stall is detected

in the ID stage

Data forwarding is handled

in the RR stage

11

▪ Overall simulator architecture

• snurisc6.py: It parses arguments from the user and controls the overall simulation

• program.py: It loads the contents of the input RISC-V executable file to imem

• pipe.py: It controls the actual execution of the simulation

• stage.py: It contains the datapath information for each stage and the control logic

• components.py: It has various hardware components such as RegisterFile, Register,

Memory, ALU, and Adder

• isa.py: It has definition of each instructions and decoding logic for RISC-V

instruction set

• consts.py: It defines various constants used throughput the simulator

12

▪ class Pipe (in pipe.py)

def set_stages(cpu, stages):
Pipe.cpu = cpu
Pipe.stages = stages
Pipe.IF = stages[S_IF]
Pipe.ID = stages[S_ID]
Pipe.RR = stages[S_RR]
Pipe.EX = stages[S_EX]
Pipe.MM = stages[S_MM]
Pipe.WB = stages[S_WB]

Each points to the corresponding objects of

IF, ID, RR, EX, MM and WB classes

def run(entry_point):
IF.reg_pc = entry_point
while True:

Pipe.WB.compute()
Pipe.MM.compute()
Pipe.EX.compute()
Pipe.RR.compute()
Pipe.ID.compute()
Pipe.IF.compute()
Update states
Pipe.IF.update()
Pipe.ID.update()
Pipe.RR.update()
Pipe.EX.update()
Pipe.MM.update()
ok = Pipe.WB.update()

if not ok:
break

Manipulation of signals using

some combinational logic

performed inside of the stage

Contents of the pipeline

registers are updated

Reverse order due to

dependence of

hazard/forwarding

detection

13

▪ Naming convention

• Pipeline registers

– Implemented as class variables

→ referenced as [class name].[variable name]

– Prefix ‘reg_’ is added

e.g., RR.reg_pc: pipeline register ‘reg_pc’ between ID and RR stage

• Internal signals within a stage

– Implemented as instance variables

→ referenced as self.[variable name] or Pipe.[class name].[variable name]

e.g., self.pc defined in the ID stage can be referenced as Pipe.ID.pc

ID RR

reg_pc

RR.reg_pc

self.pc = … self.pc = …

Pipe.ID.pc
Pipe.RR.pc

14

▪ Usage conventions

• When you want to pass the pipeline register to next stage,

ID RR

reg_pc

in compute()

self.pc = …

in update()

RR.reg_pc = self.pc

in compute()

self.pc = RR.reg_pc

in update()

EX.reg_pc = self.pc

Update pipeline register

in update()

Get updated value

in compute()

Pipeline register in next

stage is updated

15

▪ For more detailed information, refer to SNURISC5

• pyrisc/pipe5/README.md

• pyrisc/pipe5/GUIDE.md

Specification

17

Currently, it just supports some of ALU operations

without any hazard detection and control logic

18

Implementing a 6-stage pipelined RISC-V processor simulator

▪ It should accept the same RISC-V executable file accepted by SNURISC5

▪ Its values of registers and data memory should be same with SNURISC5

▪ Data forwarding should be fully implemented

19

Implementing a 6-stage pipelined RISC-V processor simulator

▪ When data forwarding can’t solve the dependency among instructions,

the pipeline should be stalled (e.g., load-use hazard)

▪ You should minimize the number of stalled cycles

(e.g., 1 cycle stall for load-use hazard)

20

Data forwarding 1 2 3 4 5 6 7 8 9

add t0, t1, t2

add t3, t0, t3

IF ID

IF ID RR

RR

EX

EX

MM

MM

WB

WB

Data forwarding is required

&

Data is determined at EX stage

Data forwarding occurs at the end of EX stage

21

Load-use hazard 1 2 3 4 5 6 7 8 9

IF

lw t0, 0(sp)d

add t3, t0, t3

…

IF ID

IF ID RR

RR

EX

EX

MM

MM

WB

WB

Load-use hazard

ID

IF RR EX MM WBID
Load-use hazard detected→ Stall

Data forwarding occurs at the end of MM stage

&

Data forwarding is required

&

Data is determined at MM stage

22

Implementing the “always-taken” branch prediction scheme

▪ Branch prediction should be performed in the IF stage

▪ Branch outcome is determined in the EX stage

▪ When the prediction was wrong, you need to cancel the incorrectly

fetched instructions and forward the correct value for next pc

(the address of the original branch instruction + 4)

23

Implementing the “always-taken” branch prediction scheme

▪ You should use the same prediction scheme for the jal instruction

▪ jalr instruction should be handled as “always-not-taken” scheme

24

Taken branch 1 2 3 4 5 6 7 8 9

beq t0, t0, L1

add t1, t2, t3

addi t1, t1, -1

sub t4, t1, t2

…

…

sub t5, t6, t7

xori t5, t5, 1

add t6, t6, t5

addi t6, t6, 10

L1:

IF

branch instruction → “always taken“ branch prediction

ID

IF ID RR

RR

IF ID RR

EX

EX

EX

MM

MM

MM

WB

WB

WB

IF ID RR

IF ID RR

EX

EX

MM

MM

WB

25

Not-Taken branch 1 2 3 4 5 6 7 8 9

bne t0, t0, L1

add t1, t2, t3

addi t1, t1, -1

sub t4, t1, t2

…

…

sub t5, t6, t7

xori t5, t5, 1

add t6, t6, t5

addi t6, t6, 10

L1:

IF

branch instruction → “always taken“ branch prediction

ID

IF ID RR

RR

IF ID BUBBLE

BUBBLE

EX

BUBBLE

BUBBLE

MM

BUBBLE

BUBBLE

BUBBLE

WB

IF BUBBLE BUBBLE BUBBLE BUBBLE BUBBLE

IF ID RR EX MM

IF ID RR EX

IF ID RR

MISPREDICTED

26

jal instruction 1 2 3 4 5 6 7 8 9

jal ra, L1 DDD

add t1, t2, t3

addi t1, t1, -1

sub t4, t1, t2

…

…

sub t5, t6, t7

xori t5, t5, 1

add t6, t6, t5

addi t6, t6, 10

L1:

IF

“always-taken“ branch prediction & never mispredicted

ID

IF ID RR

RR

IF ID RR

EX

EX

EX

MM

MM

MM

WB

WB

WB

IF ID RR

IF ID RR

EX

EX

MM

MM

WB

27

jalr instruction 1 2 3 4 5 6 7 8 9

jalr x0, 0(ra)d

add t1, t2, t3

addi t1, t1, -1

sub t4, t1, t2

…

…

sub t5, t6, t7

xori t5, t5, 1

add t6, t6, t5

addi t6, t6, 10

L1:

IF

“Always-not-taken” prediction

ID

IF ID RR

RR

IF ID BUBBLE

BUBBLE

EX

BUBBLE

BUBBLE

MM

BUBBLE

BUBBLE

BUBBLE

WB

IF BUBBLE BUBBLE BUBBLE BUBBLE BUBBLE

IF ID RR EX MM

IF ID RR EX

IF ID RR

MISPREDICTED

(ra contains L1)

28

Design document (each 10 points)

1. What does the overall pipeline architecture look like?

2. (About Part 1) When do data hazards occur and how do you

deal with them?

3. (About Part 2) When do control hazards occur and how do you deal

with them with the always-taken branch prediction scheme?

29

Design document (each 10 points)

1. What does the overall pipeline architecture look like?

• Complete the diagram in snurisc6-design.pdf according to your pipeline design

• A hand-drawn diagram is OK

• Take a picture of your diagram and attach it in your design document

30

Design document (each 10 points)

2. When do data hazards occur and how do you deal with them?

• Show all the possible cases when data hazards can occur and your solutions to them

• What hardware has been added to detect and resolve data hazards and

how does it work?

31

Design document (each 10 points)

3. When do control hazards occur and how do you deal with them with

always-taken branch prediction scheme?

• Show all the possible cases when control hazards can occur and your solutions

to them

• What hardware has been added to detect and resolve control hazards and

how does it work?

32

▪ Your task is to modify the stages.py file and make it work correctly for

any combination of instructions

▪ You can test your simulator with RISC-V executable files in pyrisc/asm/

$./snurisc6.py –l 4 [path_to_pyrisc]/pyrisc/asm/sum100

33

▪ You should not change any files other than stages.py

▪ Your stages.py file should not contain any print() function even in

comment lines

▪ Your simulator should minimize the number of stalled cycles

34

▪ Your code should finish within a reasonable number of cycles

• If your simulator runs beyond the predefined threshold, you will get

TIMEOUT error

▪ The number of submissions to the server will be limited to 50 times

35

▪ Due: 11:59PM, December 16 (Wednesday)

• 25% of the credit will be deducted for every single day delay

• This is the final project → feel free to use your slip days ☺

▪ Submit only the stages.py file to the submission server

▪ Also, submit the design document(in PDF file only) to the submission

server

36

▪ If you have any question about the assignment,

feel free to ask us in email or KakaoTalk

▪ This file will be uploaded after the lab session☺

