Sunmin Jeong, Injae Kang
(snucsl.ta@gmail.com)

Systems Software &
Architecture Lab.

Seoul National University

Fall 2020

4190.308:
Computer Architecture

Lab. 4

SNURISC-SEQ

SNURISC-SEQ
|

Get the instruction
indicated by pc

data status

—p] I
u b1 2ddr imem
L]
u
- sl rsi_data—l X
] 152 152 dat P rf . | M
i o erform computation >y
-t 1 X
file
wdata | M
wenl “|u - enable
= rm STATS
. > ALU + »| addrdmem
F: | rdata
M widata
u |
X
Get values
. . : Access data memory
required for instruction
| @
The PyRISC Project
SNURISC-SEQ Diagram
() https:/fgithub.com,/snu-csifpyrisc
whdata
brimp_tarpet
jump_reg_target Write baCk data

to register file

SNURISCS

SNURISC5

= A 5-stage pipelined RISC-V Simulator

= |t consists of

* |F:Instruction fetch

ID: Instruction decode & register read
EX: Execute

MM: Memory access
WB: Writeback

SNURISC5

IF ID EX MM WB

pc pc
inst inst

contrel | —— KR] I
- rd
data status
M
i]) O M The branch outcome is determined i
=t at the end of EX stage 2
@-»{rsl rs1_data
&> rs2 rs2_data — alu_out
register
—T ™" file rs2_data
~»| wdata b M enable
wen U
™ X M i i status
‘_:3 op2_data rg >A|.U 'S addrdmemd‘]
4 @ ok X X wdata =
Forwarding M
detection 1 . > Datapath
| & resolution | The PyRISC Project
_.r — —-m SNURISC5 Diagram
Data forwardlng IS handled <> https://github.com/snu-csl/pyrisc
In the ID stage Bl v
| | Data is written to the register file
— at the end of WB stage

B - Forwarding from WB to ID should be handled

SNURISC6

SNURISC6

= A 6-stage pipelined RISC-V Simulator

" |t consists of
* |F
ID : Instruction decode
* RR :Register read }
« EX

- MM
. WB IF ID RR EX

ID stage in traditional 5-stage pipeline
is divided into two stages

SNURISC6

Stage Task
IF Fetch an instruction from imem (instruction memory)
D Decode the instruction
Prepare immediate values
RR Read the register file
Perform arithmetic/logical computation
EX :
Determine the branch outcome
MM Access dmem (data memory), if necessary
WB Write back the result to the register file

SNURISC6

IF

data status

addr imem

ID

in the ID stage

Stall
detection

Stall is detected
in the ID stage

! Control logic is located !

Data forwarding is handled

|

RR

rsl rsl_data

rs2 rs2_data
register
d

" file

wen

Forwarding
detection
& resolution

in the RR stage

Data is written to the register file
at the end of WVB stage

EX

pc pc

inst inst

exception exception

The branch outcome is determined
at the end of EX stage

>ALU

L

—> Forwarding from WB to RR should be handled

MM WB

pc
inst

exception

r/w

addr dmem

wdata

enable

status

rdata

10

SNURISC6

= Qverall simulator architecture

snuriscé.py: It parses arguments from the user and controls the overall simulation
program.py: It loads the contents of the input RISC-V executable file to imem
pipe.py: It controls the actual execution of the simulation

stage.py: It contains the datapath information for each stage and the control logic

components.py: It has various hardware components such as RegisterFile, Register,
Memory, ALU, and Adder

isa.py: It has definition of each instructions and decoding logic for RISC-V
instruction set

consts.py: It defines various constants used throughput the simulator

11

SNURISC6

def run(entry_point):
IF.reg pc = entry point

" class Pipe (in pipe.py) while True:
Pipe.WB.compute() A
Pipe.MM. compute
Reverse order due to . P P () Manipulation of signals using
def set_stages(cpu, stages): dependence of Pipe.EX. compute() > some combinational logic
Pipe.cpu = cpu hazard/forwarding P:I..pe -RR. compute() performed inside of the stage
Pipe.stages = stages detection P}pe.ID.compute()
Pipe.IF|= stages[S_IF] v Pipe.IF.compute() J
Pipe.ID|= stages[S _ID] . -
Pipe.RR|= stages[S _RR] P}pe.IF.update()
Pipe.EX|= stages[S_EX] P%pe.ID.updatE() Contents of the pipeline
Pipe.MM|= stages[S_MM] P}pe.RR.update() " registers are upljigted
Pipe.WB|= stages[S _WB] i}Pe-ﬁﬁ-UpjaEe()
Each points to the corresponding objects of ini) Pi[.)gr.)wg . 3|§Zlate() -

IF, ID, RR, EX, MM and WB classes

if not ok:
break

12

SNURISC6

ID
* Naming convention selfpe = ..
* Pipeline registers Q
— Implemented as class variables Pipe.ID.pc

—> referenced as [class name].[variable name]
— Prefix ‘reg_’ is added

e.g., RR.reg_pc: pipeline register ‘reg_pc’ between ID and RR stage

* Internal signals within a stage

— Implemented as instance variables
—> referenced as self.[variable name] or Pipe.[class name].[variable name]

e.g., self.pc defined in the ID stage can be referenced as Pipe.ID.pc

RR

self.pc = ...
reg_pc \v
Pipe.RR.pc

RR.reg_pc

13

SNURISC6

= Usage conventions

* When you want to pass the pipeline register to next stage,

1D

in compute()
self.pc = ...

in update()
RR.reg_pc = self.pc

\/

Update pipeline register
in update()

»

RR

in compute()

self.pc = RR.reg_pc Get updated value
in compute()

in update()
EX.reg_pc = self.pc

Pipeline register in next
stage is updated

14

SNURISC6

= For more detailed information, refer to SNURISC5
* pyrisc/pipe5/README.md
* pyrisc/pipe5/GUIDE.md

15

Specification

Skeleton

IF

Currently, it just supports some of ALU operations
without any hazard detection and control logic

ID

pc

RR

pc

inst

inst

data status

,H

addr imem

exception

exception

—

rsl rs1_data

rs2 rs2_data
register
“ file
wdata

wen

WB

pc pc pc
inst inst inst
exception exception exception
opl_data
op2_data
> nw
/ enable
r/w
status
addr dmem
rdata
wdata
Datapath
The PyRISC Project

SNURISC6 Diagram

https://github.com/snu-csl/pyrisc

17

Part | (30 points)

Implementing a 6-stage pipelined RISC-V processor simulator
" |t should accept the same RISC-V executable file accepted by SNURISC5

" |ts values of registers and data memory should be same with SNURISC5

= Data forwarding should be fully implemented

Part | (30 points)

Implementing a 6-stage pipelined RISC-V processor simulator

* When data forwarding can’t solve the dependency among instructions,
the pipeline should be stalled (e.g., load-use hazard)

" You should minimize the number of stalled cycles
(e.g., | cycle stall for load-use hazard)

Part | (30 points) — example ()

Data forwarding I 2 3
add| [to} t1, t2 IF ID RR
add t3,[te] t3 IF ID
Data forwarding is required Data fgrwarding occurs at the [stage
&

Data is determined at EX stage

Part | (30 points) — example (2)

Load-use hazard I 2 3 4

Dhata forwarc

lw| [te] o(sp) IF ID RR
add t3,[te] t3 IF ID ID
Load-use hazard Load-use hazard detected—> Stal|
IF IF ID
&
Data forwarding is required
&

Data is determined at MM stage

Part 2 (40 points)

Implementing the “always-taken” branch prediction scheme
* Branch prediction should be performed in the |F stage

* Branch outcome is determined in the EX stage

* When the prediction was wrong, you need to cancel the incorrectly
fetched instructions and forward the correct value for next pc
(the address of the original branch instruction + 4)

Part 2 (40 points)

Implementing the “always-taken” branch prediction scheme

" You should use the same prediction scheme for the jal instruction

= jalr instruction should be handled as “always-not-taken” scheme

branch instruction = “always taken* branch prediction

Taken branch

-

L1:

Part 2 (40 points) — example ()

2

BEq
add
addi

sub

sub
xori
add
addi

to,
t1,
t1,
t4,

t5,
t5,
t6,
t6,

to,
t2,
t1,
t1,

t6,
t5,
t6,
t6,

L1
t3
-1
t2

t7

t5
10

IF

ID

IF

RR

1D
IF

RR
D)
IF

s

IF

Trm

Part 2 (40 points) — example (2)

branch instruction = “always taken* branch prediction
&Not-Taken branch

2

Bhe

add
addi

sub

L1: sub
xori
add
addi

to,
t1,
t1,
t4,

t5,
t5,
t6,
t6,

to,
t2,
t1,
t1,

t6,
t5,
t6,
t6,

L1
t3
-1
t2

t7

t5
10

IF

ID

IF

1D
IF

RR
D)
IF

5 6 7 8 9
IF ID RR
IF ID RR
BUBBLE | BUBBLE | BUBBLE
BUBBLE | BUBBLE | BUBBLE | BUBBLE
BUBBLE | BUBBLE | BUBBLE | BUBBLE | BUBBLE

25

L1:

Part 2 (40 points) — example (3)

Iways-taken* branch prediction & never mispredicted

<

jal instruction

2

351
add
addi

sub

sub
xori
add
addi

ra,
t1,
t1,
t4,

t5,
t5,
t6,
t6,

L1
t2,
t1,
t1,

t6,
t5,
t6,
t6,

t3

t2

t7

t5
10

IF

ID

IF

RR

1D
IF

RR
D)
IF

s

IF

Trm

jalr instruction I 2 3
jalr x0, o(ra) IF D | RR
add t1, t2, t3 IF ID
addi t1, ti1, -1 IF
sub t4, t1, t2

(ra contains L1)

L1:

sub t5,
xori t5,
add té6,
addi t6,

t6, t7
t5, 1
t6, t5
t6, 10

BUBBLE
BUBBLE
BUBBLE

IF

Part 2 (40 points) — example (4)

“Always-not-taken” prediction

-

BUBBLE
BUBBLE
BUBBLE

D)
IF

7 8 9
BUBBLE
BUBBLE | BUBBLE
BUBBLE | BUBBLE | BUBBLE
R || EX
1D RR
IF ID RR

27

Part 3 (30 points)

Design document (each 10 points)
|. What does the overall pipeline architecture look like?

2. (About Part I) When do data hazards occur and how do you
deal with them!?

3. (About Part 2) When do control hazards occur and how do you deal
with them with the always-taken branch prediction scheme!?

Part 3 (30 points)

Design document (each 10 points)

|. What does the overall pipeline architecture look like?

* Complete the diagram in snuriscé6-design.pdf according to your pipeline design

* A hand-drawn diagram is OK

* Take a picture of your diagram and attach it in your design document

MM WwB

exception

;;;;;;

mmmmmmm

Part 3 (30 points)

Design document (each 10 points)

2. When do data hazards occur and how do you deal with them!?

* Show all the possible cases when data hazards can occur and your solutions to them

* What hardware has been added to detect and resolve data hazards and
how does it work?

30

Part 3 (30 points)

Design document (each 10 points)

3. When do control hazards occur and how do you deal with them with
always-taken branch prediction scheme!
* Show all the possible cases when control hazards can occur and your solutions

to them
* What hardware has been added to detect and resolve control hazards and

how does it work?

31

Specification

" Your task is to modify the stages.py file and make it work correctly for
any combination of instructions

" You can test your simulator with RISC-V executable files in pyrisc/asm/

$./snurisc6.py -1 4 [path _to pyrisc]/pyrisc/asm/sumlo0

Specification

" You should not change any files other than stages.py

" Your stages.py file should not contain any print() function even in

comment lines

" Your simulator should minimize the number of stalled cycles

33

Specification
" Your code should finish within a reasonable number of cycles

* If your simulator runs beyond the predefined threshold, you will get
TIMEOUT error

= The number of submissions to the server will be limited to 50 times

34

Submission

* Due: | 1:59PM, December |6 (VWWednesday)

* 25% of the credit will be deducted for every single day delay
* This is the final project = feel free to use your slip days ©

= Submit only the stages.py file to the submission server

" Also, submit the design document(in PDF file only) to the submission
server

35

Thank you!

* |f you have any question about the assignment,
feel free to ask us in email or KakaoTalk

» This file will be uploaded after the lab session©

36

