Jin-Soo Kim
(jinsoo.kim@snu.ac.kr)

Systems Software &
Architecture Lab.

Seoul National University

Fall 2020

Advanced
Processor Architecture

Chap. 4.10 — 11,4.14 — 15



Instruction-Level Parallelism (ILP)

= Pipelining: executing multiple instructions in parallel
* How to increase |ILP?
= Deeper pipeline (“superpipelined”)

* Less work per stage = shorter clock cycle

= Multiple issue
* Replicate pipeline stages = multiple pipelines
 Start multiple instructions per clock cycle
CPI < I, so use Instructions Per Cycle (IPC)
e.g.,4GHz 4-way multiple-issue: 16 BIPS, peak CPl = 0.25, peak IPC = 4

But dependencies reduce this in practice

4190.308: Computer Architecture | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)



Superpipelined vs. Multiple-Issue

= Superpipelined

* Subdivide each pipeline stage

* Higher clock speed

suoinanaisuj

>

4190.308: Computer Architecture | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.a

c.kr)

Clock cycles

= Multiple-issue

* Execute multiple instructions in parallel

* The EX stage has many functional units

suoinonajsuj

IF ID EX | WB
IF ID EX | WB
IF ID EX | WB
IF ID EX | WB
IF ID EX @ WB
IF ID EX | WB
>
Clock cycles



Multiple Issue

= Static multiple issue
* Compiler groups instructions to be issued together
* Packages them into “issue slots”
* Compiler detects and avoids hazards
* VLIW(Very Long Instruction Word) processors

* Dynamic multiple issue
* CPU examines instruction stream and chooses instructions to issue each cycle
* Compiler can help by reordering instructions
* CPU resolves hazards using advanced techniques at runtime

* Superscalar processors

4190.308: Computer Architecture | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)



Static Multiple Issue

= Compiler groups instructions into “issue packets”
* Group of instructions that can be issued on a single cycle
* Usually restricts what mix of instructions can be initiated in a clock cycle

* Determined by pipeline resources required

* Think of an issue packet as a very long instruction

* Specifies multiple concurrent operations
* Very Long Instruction Word (VLIW)



Scheduling Static Multiple Issue

* Compiler must remove some/all hazards

* Reorder instructions into issue packets
* No dependencies within a packet

* Possibly some dependencies between packets
* Varies between ISAs; compiler must know!

* If all hazards are not removed, the hardware should detect hazards and generate
stalls between two issue packets

= Pad with nop if necessary



RISC-V with Static Dual Issue

" Two-issue packets
* 64-bit aligned: One ALU/branch instruction + One load/store instruction
* Pad an unused instruction with nop

* Additional hardware:
— +2 read / +1| write ports in register file
— Separate adder for computing the effective address for memory

Address Instruction type Pipeline stages

n ALU/branch IF ID EX MEM WB

n+ 4 Load/store |F ID EX MEM WB

n + 8 ALU/branch |F ID EX MEM WB

n + 12 Load/store |F ID EX MEM WB

h + 16 ALU/branch IF ID EX MEM WB
h + 20 Load/store |F ID EX MEM WB




RISC-V with Static Dual Issue

+
>~ ~
i ul -] > M ]
u >
4 —»| .|
- / ALU .
. '
> > > M
M Registers u >
1C090000 <+={ u _,, Instruction :: - X
X memory — ) |
- " = —| Write
\ . - data
Data
~ Gen > AL B memory
'\ Gen 7 Imm \ :
N/ | Gen > N
U Address

4190.308: Computer Architecture | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)



Hazards in the Dual-Issue RISC-V

* More instructions executing in parallel
= EX data hazard

* Forwarding avoided stalls with single-issue
* Now can’t use ALU result in load/store in same packet

* Split into two packets, effectively a stall

= | oad-use hazard

* Still one cycle use latency, but now two instructions

" More aggressive scheduling required

add
1d

x10, x0, x13
X2, 0(x10)




Scheduling Example

= Schedule this for dual-issue RISC-V

Loop:

1d
add
sd
addi
blt

x31,
x31,
x31,
X20,
X22,

0(x20)
x31, x21
0(x20)
X20,
X20,

-8

Loop

//
//
//
//
//

x31 = array element

add scalar in x21
store result
decrement pointer

branch if x22 < x20

ALU/branch

Load/store

Cycle

Loop: nop 1d x31, 0(x20) 1
addi x20, x20, -8 nop 2
add x31, x31, x21 nop 3
blt x22, x20, Loop sd x31, 8(x20) 4

« IPC = 5/4 = 1.25 (cf. peak IPC = 2)

10



Loop Unrolling

» Replicate loop body to expose more parallelism

* Reduces loop-control overhead

= Use different registers per replication
* Called “register renaming”

* Avoid loop-carried “anti-dependencies” (or “name dependencies”)
— Store followed by a load of the same register
— Reuse of a register name

11



Loop Unrolling Example

Loop:

1d
add
sd
addi
blt

x31,
x31,
x31,
X20,
X22,

0(x20)
x31, x21
0(x20)
X200, -8
X20,

Loop

=)

Loop:

1d
add
sd

1d
add
sd

1d
add
sd

1d
add
sd

addi
blt

x31,
x31,
x31,

x31,
x31,
x31,

x31,
x31,
x31,

x31,
x31,
x31,

X20,
X22,

0(x20)
x31, x21
0(x20)

-8(x20)
x31, x21
-8(x20)

-16(x20)
x31, x21
-16(x20)

-24(x20)
x31, x21
-24(x20)

X200, -32
x20, Loop

12



Loop Unrolling Scheduled Example

ALU/branch Load/store Cycle
Loop: addi x20, x20, -32 1d x28, 0(x20) 1
nop 1d x29, 24(x20) 2
add x28, x28, x21 1d x30, 16(x20) 3
add  x29, x29, x21 1d x31, 8(x20) 4
add x30, x30, x21 sd x28, 32(x20) 5
add  x31, x31, x21 sd x29, 24(x20) 6
nop sd x30, 16(x20) 7
blt  x22, x20, Loop sd x31, 8(x20) 8
IPC = 14/8 = 1.75

* Closer to 2, but at cost of registers and code size

13



Dynamic Multiple Issue

= “Superscalar” processors
* CPU decides whether to issue 0, |, 2, ... each cycle

* Avoiding structural and data hazards

= Avoids the need for compiler scheduling

* Through it may still help
* Code semantics ensured by the CPU

" |n-order vs. out-of-order (OOO)

* Out-of-order processor analyzes the data flow structure of a program, and then
executes instructions in some order that preserves the data flow order
(Instruction execution order # program order)

14



Dynamic Pipeline Scheduling

= Allow the CPU to execute instructions out of order to avoid stalls

* But commit result to registers in order

= Example

1d x31, 20(x21)
add x1, x31, x2

sub x23, x23, x3
andi x5, x23, x20

* Can start sub while add is waiting for 1d

15



Dynamically Scheduled CPU

Instruction fetch
and decode unit

l

\ |

Y

Y

In-order issue «— |

dependencies

Preserves

Hold pending

operands

Reservation | | Reservation Reservation || Reservation |
station station station station |
Funct_ional Integer Integer Floa_ting Load- | out-of-order execute
units point store
Com'n;nit In-order commit
uni
Reorders buffer |—
Can supply

for register writes

issued

operands for

instruction

Results also sent
to any waiting
reservation stations

16



Speculation

= "Guess" what to do with an instruction
* Start operation as soon as possible
* Check whether guess was right = If not, roll-back and do the right thing

= Speculate on branch outcome
* Predict branch and continue issuing

e Don’t commit until branch outcome determined

" Speculate on load

* Avoid load and cache miss delay
— Predict the effective address or loaded value
— Load before completing outstanding stores
— Bypass stored values to load unit

* Don’t commit load until speculation cleared

4190.308: Computer Architecture | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

17



Why Do Dynamic Scheduling?

" Why not just let the compiler schedule code?

* Not all stalls are predictable

* e.g., cache misses

* Can’t always schedule around branches

* Branch outcome is dynamically determined

* Different implementations of an ISA have different latencies and hazards



Does Multiple Issue Work!?

" Yes, but not as much as we'd like
* Programs have real dependencies that limit ILP
* Some dependencies are hard to eliminate
* e.g., pointer aliasing
* Some parallelism is hard to expose
* Limited window size during instruction issue

= Memory delays and limited bandwidth
* Hard to keep pipelines full

= Speculation can help if done well

19



Power Efficiency

* Complexity of dynamic scheduling and speculations requires power

= Multiple simpler cores may be better

Microprocessor Clock Rate Psifae;iense \:\j?::h Osul:(;::‘-lc;:?:r:/ Cores Power
i486 1989 25MHz 5 1 No 1 5W
Pentium 1993 66MHz 5 2 No 1 10W
Pentium Pro 1997 200MHz 10 3 Yes 1 29W
P4 Willamette 2001 2000MHz 22 3 Yes 1 75W
P4 Prescott 2004 3600MHz 31 3 Yes 1 103W
Core 2006 2930MHz 14 4 Yes 2 75W
Core i5 Nehalem 2010 3300MHz 14 4 Yes 2-4 87W
Core i5 Ivy Bridge 2012 3400MHz 14 4 Yes 8 77W

20



CPU Trends

I Stuttering

® Transistors per chip, ‘000 ® Clock speed (max), MHz ® Thermal design power*, w

| Chipintroduction

dates, selected

Transistors bought per $, m | Pentium 4 | Xeon | |Core 2 Duo
20 : Log scale
15 Pentium III 107
10 L0
L]
3 Pentium
— T T 1 T 1 7170 10°
200204 06 08 10 12 15 486
10%
10
r - r» r» o r ¢~~~ r v n ., n v n ] rn,vn r T rr r r |1~ &§ &1 1T ] ]-D-II
1970 75 80 85 80 95 2000 05 10 15

Sources: Intel; press reports; Bob Colwell; Linley Group; IB Consulting; The Economist
4190.308: Computer Architecture | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

*Maximum safe power consumption

21



Why Multi-core!?

= Memory wall
* CPU 55%/year, Memory |0%/year (1986 —2000)

* Caches show diminishing returns

= |LP (Instruction Level Parallelism) wall
* Control dependency
* Data dependency

* Power wall
e Dynamic power o« Frequency?
* Static power o« Frequency

* Total power o« The number of cores

4190.308: Computer Architecture | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

22



Single-core vs. Multi-core

1.73x

B performance

Power

1.13x

1.00x More MIPS/watt

Raise
Clock (20%)

1.73x

POWER

Single—Core 0.87x

Lower

Clock (20%) Dual-Core

Source: Intel

4190.308: Computer Architecture | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 23




Cortex A53 vs. Intel i/

Processor ARM Cortex A53 Intel Core i7 920
Market Personal mobile device Server, cloud
Thermal design power (TDP) 100 milliWatts (1 core @ 1 GHz) 130 Watts
Clock rate 1.5 GHz 2.66 GHz
Cores/Chip 4 (configurable) 4
Floating point? Yes Yes
Multiple issue? Dynamic Dynamic
Peak instructions/clock cycle 2 4
Pipeline stages 8 14
Pipeline schedule Static in-order Dynamic out-of-order with speculation
Branch prediction Hybrid 2-level
1st level caches/core 16-64KiB IS, 16-64 KiB DS 32KiB IS, 32 KiB DS
2nd level caches/core 128-2048 KiB 256 KiB (per core)

3rd level caches (shared)

(platform dependent)

2-8 MB

24



ARM Cortex-A53 Pipeline

F1 F2 F3 F4 Iss Ex1 Ex2 Wr
Integer execute and load-store
Instruction fetch & predict
- ALU pipe 0 »
Integer
AGU | Register —
+ - file - ALU pipe 1 -
TLB » Hybrid
. Predictor
Instruction . MAC bipe N
Cache : PP ™ Writeback
Indirect
> Predictor .
Bl Divide pipe >
Issue - Load pipe »
L Store pipe »
Instruction Decode Floating Point execute
13-Entry . .
L, Early » Instruction _ Main Late Register
Decode Queue Decode Decode file ALU pipe
D1 D2 D3 F1 F2 F3 F4 F5

25



ARM Cortex-A53 Performance

10.00
I Memory hierarchy stalls
9.00 T——  Pipeline stalls
M Ideal CPI
8.00
7.00
6.00
5.00
4.00
3.00
2.14
2.00 1.75 1.76
1 39
117 122 133 . l
0,Oollllllllllllﬁ

hmmer h264ref libquantum perlbench  sjeng

4190.308: Computer Architecture | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

bzip2

gobmk xalancbmk

gcc

astar

omnetpp mcf

26



Corei/

Pipeline

Intel Nehalem (2008)

Intel P6 (1995)

(Iggt;:tléi) 8K Instruction Cache o
-~
~-128 64 |~
A 4 1
@rraargg? ": Simple Decoder I—uib
1 uo
Bu‘f;fer —>| Simple Decoder Id—bp R;S#gfr
4 ug :
— General Decoder 2, (40 entries)
Instruction \/
Fetch Unit| IN-ORDER | Uop Sequencer

SECTION

Reservation Station

L2TLE (4-way) | i4-way associative) | | cache (8-way associative)

128-Entry | 32 KB Inst. cache (four-way associative) |«
inst. TLB 4 v
(four-way) 16-Byte pre-decode+macro-op
o - fusion, fetch buffer
v
IS ron [ 18-Entry instruction queus |
hardware > > » >
Complex  Simple Simple Simple
Micrg | -Y| TMECFO-Op | | macro-op | | macfo-op | | macro-op
-code decoder decoder decoder decoder
— v v v
28-Entry micro-op loop stream detect buffer
| Register alias table and allocator
Retirement e
register fle |7 128-Entry reorder buffer
L 38-Entry reservation station
v v v _ 4
ALU ALU | | Load | Store | Store | ALU
shift shift address | | address data shift
' “asg B —
SSE SSE v v v =
chile | sl ooy onrtter | | Sl
[ I I
128-bit 128-bit 128-bit
FMUL FMUL Store EMUL
FDIV FDIV & load fln
[ T :
y¥Y¥y¥T¥vryv -
512-Entry unified 4| 64-Eriry data TLB | | 32.KB dual-ported daia | assKauriediz
cache (gight-way)

v 4

8 MB all core shared and inclusive L3 — Uncore arbiter (handles scheduling and

cache (16-way associative) — clock/power state differences)

(20 entries)

Store S:c?drf IA%%?, Integer ‘ FP Integer
Data Unit Unit ALU Unit Unit

Memory Reorder
Buffer (MOB)

1 load

1 store

load data

Data TLB
(64 entry)

8K Dual-Ported Data Cache

System Bus Interface

L2 Cache Interface

-

4 »

4190.308: Computer Architecture | Fall 2020 |

Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

36 addr ~} 64 data
X v

~} 64 data
v

27



Intel Sunny Cove (2019)

Front End

Branch
Predictor
(BPU)

Instruction
Cache Tag| L1 Instruction Cache

e |

Tag
16 By‘cyde

Instruction Fetch & PreDecode
(16 B window)

Instruction Queue
(50; 2x25 entries)

MicroCode || 5-Way Decode

ROM
{MS ROM)

Sequencer
57 | e el
14 3

i | L B J N

{(
(2k poPs; &Way)
(64 B window)

Decoded Stream Buffer (DSB)
Cache]

Ps

e &

Checker &
Retirement (CRU)|

Branch Order Buffer|
(BOB) (48-entry)

ReOrder Buffer (352 entries)

] Rename / Allocate / Retirement |

(5802) s95ng e300 Uoww o>

Execution

4190.308: Computer Architecture | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

t ¥ ¥

¥

:
‘

871.LS paylun
Agw-8 anizts
ayoed z1

LSuU

Load Buffer
(128 entries)

L1 Data Cache

a12A2/ap9

48KiB 12-Way

Memory Subsystem

To

28



Core i/ Performance

CPI

3_ _____________________________________________________
Stalls, misspeculation
267
m [deal CPI Branch misprediction %  m Wasted work %
2.5 = m e =
400 - - oo
212
P N B A e :
O -
15 1-—-——m e —— S - 25% - P —m— - —— - -
1.23
1og 106 e e -
e - J-- -
0 o o o o D . _
074 077 naz 159
061 065 -
0sg *~ 0% 4 oo __ e . ______ _
044
0.5 1244 R R 7
gog d o sy ___ o MM ___;I__W“ -
w2 2‘“" 2
JAR BB AR AR ON |-zl cHcl N
& @ & & & &
N | 5, » & & 45 d
& @ <@ {\EP & & .@PQ & & § N as‘f’\ & @Q’b‘ S RS
& P & F PO S o o & 2
NS & © & h
X ¢ +

4190.308: Computer Architecture | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 29



Summary

* |SA influences design of datapath and control
* Datapath and control influences design of ISA

* Pipelining improves instruction throughput using parallelism
* More instructions completed per second

* Latency for each instruction not reduced
* Hazards: structural, data, control

= Multiple issue and dynamic scheduling (ILP)
* Dependencies limit achievable parallelism
* Complexity leads to the power wall

30



