
Advanced

Processor Architecture

Jin-Soo Kim
(jinsoo.kim@snu.ac.kr)

Systems Software &
Architecture Lab.

Seoul National University

Fall 2020

Chap. 4.10 – 11, 4.14 – 15

4190.308: Computer Architecture | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 2

▪ Pipelining: executing multiple instructions in parallel

▪ How to increase ILP?

▪ Deeper pipeline (“superpipelined”)

• Less work per stage  shorter clock cycle

▪ Multiple issue

• Replicate pipeline stages  multiple pipelines

• Start multiple instructions per clock cycle

• CPI < 1, so use Instructions Per Cycle (IPC)

• e.g., 4GHz 4-way multiple-issue: 16 BIPS, peak CPI = 0.25, peak IPC = 4

• But dependencies reduce this in practice

4190.308: Computer Architecture | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 3

▪ Superpipelined

• Subdivide each pipeline stage

• Higher clock speed

Clock cycles

In
stru

ctio
n

s

IF ID EX WB

▪ Multiple-issue

• Execute multiple instructions in parallel

• The EX stage has many functional units

IF ID EX WB

Clock cycles

In
stru

ctio
n

s

IF ID EX WB

IF ID EX WB

IF ID EX WB

IF ID EX WB

IF ID EX WB

4190.308: Computer Architecture | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 4

▪ Static multiple issue

• Compiler groups instructions to be issued together

• Packages them into “issue slots”

• Compiler detects and avoids hazards

• VLIW(Very Long Instruction Word) processors

▪ Dynamic multiple issue

• CPU examines instruction stream and chooses instructions to issue each cycle

• Compiler can help by reordering instructions

• CPU resolves hazards using advanced techniques at runtime

• Superscalar processors

4190.308: Computer Architecture | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 5

▪ Compiler groups instructions into “issue packets”

• Group of instructions that can be issued on a single cycle

• Usually restricts what mix of instructions can be initiated in a clock cycle

• Determined by pipeline resources required

▪ Think of an issue packet as a very long instruction

• Specifies multiple concurrent operations

• Very Long Instruction Word (VLIW)

4190.308: Computer Architecture | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 6

▪ Compiler must remove some/all hazards

▪ Reorder instructions into issue packets

▪ No dependencies within a packet

▪ Possibly some dependencies between packets

• Varies between ISAs; compiler must know!

• If all hazards are not removed, the hardware should detect hazards and generate

stalls between two issue packets

▪ Pad with nop if necessary

4190.308: Computer Architecture | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 7

▪ Two-issue packets

• 64-bit aligned: One ALU/branch instruction + One load/store instruction

• Pad an unused instruction with nop

• Additional hardware:

– +2 read / +1 write ports in register file

– Separate adder for computing the effective address for memory

Address Instruction type Pipeline stages

n ALU/branch IF ID EX MEM WB

n + 4 Load/store IF ID EX MEM WB

n + 8 ALU/branch IF ID EX MEM WB

n + 12 Load/store IF ID EX MEM WB

n + 16 ALU/branch IF ID EX MEM WB

n + 20 Load/store IF ID EX MEM WB

4190.308: Computer Architecture | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 8

4190.308: Computer Architecture | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 9

▪ More instructions executing in parallel

▪ EX data hazard

• Forwarding avoided stalls with single-issue

• Now can’t use ALU result in load/store in same packet

• Split into two packets, effectively a stall

▪ Load-use hazard

• Still one cycle use latency, but now two instructions

▪ More aggressive scheduling required

add x10, x0, x13
ld x2, 0(x10)

4190.308: Computer Architecture | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 10

▪ Schedule this for dual-issue RISC-V

• IPC = 5/4 = 1.25 (cf. peak IPC = 2)

Loop: ld x31, 0(x20) // x31 = array element
add x31, x31, x21 // add scalar in x21
sd x31, 0(x20) // store result
addi x20, x20, -8 // decrement pointer
blt x22, x20, Loop // branch if x22 < x20

ALU/branch Load/store Cycle

Loop: nop ld x31, 0(x20) 1

addi x20, x20, -8 nop 2

add x31, x31, x21 nop 3

blt x22, x20, Loop sd x31, 8(x20) 4

4190.308: Computer Architecture | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 11

▪ Replicate loop body to expose more parallelism

• Reduces loop-control overhead

▪ Use different registers per replication

• Called “register renaming”

• Avoid loop-carried “anti-dependencies” (or “name dependencies”)

– Store followed by a load of the same register

– Reuse of a register name

4190.308: Computer Architecture | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 12

Loop: ld x31, 0(x20)
add x31, x31, x21
sd x31, 0(x20)
addi x20, x20, -8
blt x22, x20, Loop

Loop: ld x31, 0(x20)
add x31, x31, x21
sd x31, 0(x20)

ld x31, -8(x20)
add x31, x31, x21
sd x31, -8(x20)

ld x31, -16(x20)
add x31, x31, x21
sd x31, -16(x20)

ld x31, -24(x20)
add x31, x31, x21
sd x31, -24(x20)

addi x20, x20, -32
blt x22, x20, Loop

4190.308: Computer Architecture | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 13

▪ IPC = 14/8 = 1.75

• Closer to 2, but at cost of registers and code size

ALU/branch Load/store Cycle

Loop: addi x20, x20, -32 ld x28, 0(x20) 1

nop ld x29, 24(x20) 2

add x28, x28, x21 ld x30, 16(x20) 3

add x29, x29, x21 ld x31, 8(x20) 4

add x30, x30, x21 sd x28, 32(x20) 5

add x31, x31, x21 sd x29, 24(x20) 6

nop sd x30, 16(x20) 7

blt x22, x20, Loop sd x31, 8(x20) 8

4190.308: Computer Architecture | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 14

▪ “Superscalar” processors

▪ CPU decides whether to issue 0, 1, 2, … each cycle

• Avoiding structural and data hazards

▪ Avoids the need for compiler scheduling

• Through it may still help

• Code semantics ensured by the CPU

▪ In-order vs. out-of-order (OOO)

• Out-of-order processor analyzes the data flow structure of a program, and then

executes instructions in some order that preserves the data flow order

(Instruction execution order ≠ program order)

4190.308: Computer Architecture | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 15

▪ Allow the CPU to execute instructions out of order to avoid stalls

• But commit result to registers in order

▪ Example

• Can start sub while add is waiting for ld

ld x31, 20(x21)
add x1, x31, x2
sub x23, x23, x3
andi x5, x23, x20

4190.308: Computer Architecture | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 16

Results also sent
to any waiting

reservation stations

Reorders buffer
for register writes

Can supply
operands for

issued instruction

Preserves
dependencies

Hold pending
operands

4190.308: Computer Architecture | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 17

▪ "Guess" what to do with an instruction

• Start operation as soon as possible

• Check whether guess was right → If not, roll-back and do the right thing

▪ Speculate on branch outcome

• Predict branch and continue issuing

• Don’t commit until branch outcome determined

▪ Speculate on load

• Avoid load and cache miss delay

– Predict the effective address or loaded value

– Load before completing outstanding stores

– Bypass stored values to load unit

• Don’t commit load until speculation cleared

4190.308: Computer Architecture | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 18

▪ Why not just let the compiler schedule code?

▪ Not all stalls are predictable

• e.g., cache misses

▪ Can’t always schedule around branches

• Branch outcome is dynamically determined

▪ Different implementations of an ISA have different latencies and hazards

4190.308: Computer Architecture | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 19

▪ Yes, but not as much as we’d like

▪ Programs have real dependencies that limit ILP

▪ Some dependencies are hard to eliminate

• e.g., pointer aliasing

▪ Some parallelism is hard to expose

• Limited window size during instruction issue

▪ Memory delays and limited bandwidth

• Hard to keep pipelines full

▪ Speculation can help if done well

4190.308: Computer Architecture | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 20

▪ Complexity of dynamic scheduling and speculations requires power

▪ Multiple simpler cores may be better

Microprocessor Year Clock Rate
Pipeline
Stages

Issue
Width

Out-of-order/
Speculation

Cores Power

i486 1989 25MHz 5 1 No 1 5W

Pentium 1993 66MHz 5 2 No 1 10W

Pentium Pro 1997 200MHz 10 3 Yes 1 29W

P4 Willamette 2001 2000MHz 22 3 Yes 1 75W

P4 Prescott 2004 3600MHz 31 3 Yes 1 103W

Core 2006 2930MHz 14 4 Yes 2 75W

Core i5 Nehalem 2010 3300MHz 14 4 Yes 2-4 87W

Core i5 Ivy Bridge 2012 3400MHz 14 4 Yes 8 77W

4190.308: Computer Architecture | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 21

4190.308: Computer Architecture | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 22

▪ Memory wall

• CPU 55%/year, Memory 10%/year (1986 – 2000)

• Caches show diminishing returns

▪ ILP (Instruction Level Parallelism) wall

• Control dependency

• Data dependency

▪ Power wall

• Dynamic power  Frequency3

• Static power  Frequency

• Total power The number of cores

4190.308: Computer Architecture | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 23

Raise
Clock (20%)

1.73x

1.13x

P
ER

FO
R

M
A

N
C

E

P
O

W
ER

Lower
Clock (20%)

0.51x

0.87x

P
ER

FO
R

M
A

N
C

E

P
O

W
ER

Power

Performance

1.00x
P

ER
FO

R
M

A
N

C
E

Single–Core

P
O

W
ER

1.02x

1.73x

P
ER

FO
R

M
A

N
C

E

P
O

W
ERDual–Core

More MIPS/watt

Source: Intel

4190.308: Computer Architecture | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 24

Processor ARM Cortex A53 Intel Core i7 920

Market Personal mobile device Server, cloud

Thermal design power (TDP) 100 milliWatts (1 core @ 1 GHz) 130 Watts

Clock rate 1.5 GHz 2.66 GHz

Cores/Chip 4 (configurable) 4

Floating point? Yes Yes

Multiple issue? Dynamic Dynamic

Peak instructions/clock cycle 2 4

Pipeline stages 8 14

Pipeline schedule Static in-order Dynamic out-of-order with speculation

Branch prediction Hybrid 2-level

1st level caches/core 16-64KiB I$, 16-64 KiB D$ 32KiB I$, 32 KiB D$

2nd level caches/core 128-2048 KiB 256 KiB (per core)

3rd level caches (shared) (platform dependent) 2-8 MB

4190.308: Computer Architecture | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 25

4190.308: Computer Architecture | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 26

4190.308: Computer Architecture | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 27

Intel P6 (1995)Intel Nehalem (2008)

4190.308: Computer Architecture | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 28

4190.308: Computer Architecture | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 29

4190.308: Computer Architecture | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 30

▪ ISA influences design of datapath and control

▪ Datapath and control influences design of ISA

▪ Pipelining improves instruction throughput using parallelism

• More instructions completed per second

• Latency for each instruction not reduced

▪ Hazards: structural, data, control

▪ Multiple issue and dynamic scheduling (ILP)

• Dependencies limit achievable parallelism

• Complexity leads to the power wall

