
The Memory Hierarchy

Jin-Soo Kim
(jinsoo.kim@snu.ac.kr)

Systems Software &
Architecture Lab.

Seoul National University

Fall 2020

Chap. 5.1 – 5.2

4190.308: Computer Architecture | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 2

▪ Static RAM (SRAM)

• Each cell stores a bit with a four or six-

transistor circuit

• Retains value indefinitely, as long as it is kept

powered

• Faster and more expensive than DRAM

▪ Dynamic RAM (DRAM)

• Each cell stores a bit with a capacitor. One

transistor is used for access

• Value must be refreshed every 10 – 100 ms

• Slower and cheaper than SRAM

Technology
Typical
access
time

$ Per GiB in
2012

SRAM 0.5 – 2.5ns $500 -- $1000

DRAM 50 – 70ns $10 -- $20

Flash 5µs – 50µs $0.75 -- $1.00

Disk 5ms – 20ms $0.05 -- $0.10

4190.308: Computer Architecture | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 3

▪ Nonvolatile memories retain value even if powered off

• Read-only memory (ROM): programmed during production

• Programmable ROM (PROM): can be programmed once

• Eraseable PROM (EPROM): can be bulk erased (UV, X-ray)

• Electrically eraseable PROM (EEPROM): electronic erase capability

• Flash memories: EEPROMs with partial (block-level) erase capability (NOR vs. NAND)

• Intel Optane memory: slower than DRAM, denser and better cost/GiB than DRAM

▪ Uses for nonvolatile memories

• Firmware programs stored in a ROM (BIOS, Disk/network/graphics controllers, …)

• USB drives, smartphones, tablets, SSDs (Solid-State Drives), disk caches, …

• Main memory?

4190.308: Computer Architecture | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 4

▪ The gap widens between DRAM, disk, and CPU speeds

0.0

0.1

1.0

10.0

100.0

1,000.0

10,000.0

100,000.0

1,000,000.0

10,000,000.0

100,000,000.0

1985 1990 1995 2000 2003 2005 2010 2015

T
im

e
 (

n
s

)

Year

Disk seek time

SSD access time

DRAM access time

SRAM access time

CPU cycle time

Effective CPU cycle time
DRAM

CPU

SSD

Disk

4190.308: Computer Architecture | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 5

▪ Question:

How can we make a memory as fast as SRAM and as cheap as DRAM

(or even disk)?

▪ The key to bridging this CPU-Memory gap is a fundamental property of

computer programs known as locality

4190.308: Computer Architecture | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 6

▪ Programs tend to use data and instructions with addresses near or

equal to those they have used recently

▪ Programs access a small portion of their address space at any time

▪ Temporal locality

• Recently referenced items are likely to be accessed again soon

e.g., instructions in a loop, induction variables

▪ Spatial locality

• Items near those accessed recently are likely to be accessed

soon

• e.g., sequential instruction access, array data

4190.308: Computer Architecture | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 7

▪ Data

• Reference array elements in succession Spatial locality

(stride-1 reference pattern)

• Reference sum each iteration Temporal locality

▪ Instructions

• Reference instructions in sequence Spatial locality

• Cycle through loop repeatedly Temporal locality

sum = 0;
for (i = 0; i < n; i++)

sum += a[i];
return sum;

4190.308: Computer Architecture | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 8

▪ Some fundamental and enduring properties of hardware and software

• Fast storage technologies cost more per byte, have less capacity, and require more

power (heat!)

• The gap between CPU and main memory speed is widening

• Well-written programs tend to exhibit good locality

▪ These fundamental properties complement each other beautifully

▪ They suggest an approach for organizing memory and storage systems

known as a memory hierarchy

4190.308: Computer Architecture | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 9

▪ Taking advantage of locality

• Store everything on disk

• Copy recently accessed (and nearby) items from disk to smaller DRAM memory

(main memory)

• Copy more recently accessed (and nearby) items from DRAM to smaller SRAM

memory (cache memory)

“We are therefore forced to recognize the possibility of constructing a
hierarchy of memories, each of which has greater capacity than the
preceding but which is less quickly accessible.”

-- A. W. Burks, H. H. Goldstein, J. von Neumann, Preliminary Discussion of the Logical
Design of Electronic Computing Instrument, June 1946.

4190.308: Computer Architecture | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 10

▪ A smaller, faster storage device that acts as a staging area for a subset of

the data in a larger, slower device

▪ Fundamental idea of a memory hierarchy

• For each k, the faster, smaller device at level k serves a cache for the larger, slower

device at level k+1

▪ Why do memory hierarchies work?

• Because of locality, programs tend to access the data at level k more often than

they access the data at level k+1

Big Idea: The memory hierarchy creates a large pool of storage that costs as
much as the cheap storage near the bottom, but that serves data to programs
at the rate of the fast storage near the top

4190.308: Computer Architecture | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 11

▪ Block (or line): a unit of copying

• May be multiple words

▪ If accessed data is present in upper level

• Hit: access satisfied by upper level

• Hit ratio: hits / accesses

▪ If accessed data is absent

• Miss: block copied from lower level

• Then accessed data supplied from upper level

• Time taken: miss penalty

• Miss ratio: misses / accesses = 1 – hit ratio

4190.308: Computer Architecture | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 12

registers

on-chip L1
cache (SRAM)

main memory
(DRAM)

local secondary storage
(local magnetic disks)

Larger,
Slower,
and
Cheaper (per byte)

remote secondary storage
(distributed file systems, Web servers)

Local disks hold files
retrieved from disks on
remote network servers.

on-chip L2
cache (SRAM)

L1 cache holds cache lines retrieved
from the L2 cache memory.

CPU registers hold words retrieved
from L1 cache.

L2 cache holds cache lines
retrieved from main memory.

L0:

L1:

L2:

L3:

L4:

L5:

Smaller,
Faster,
and
Costlier (per byte)

