
Pipeline Hazards

Jin-Soo Kim
(jinsoo.kim@snu.ac.kr)

Systems Software &
Architecture Lab.

Seoul National University

Fall 2020

4190.308: Computer Architecture | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 2

▪ Situations that prevent starting the next instruction in the next cycle

▪ Structural hazard

• A required resource is busy

▪ Data hazard

• Need to wait (or stall) for previous instruction to complete its data read/write

▪ Control hazard

• Deciding on control action depends on previous instruction

4190.308: Computer Architecture | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 3

▪ Conflict for use of a resource

▪ In RISC-V pipeline with a single memory

• Load/store requires data access

• Instruction fetch would have to stall

for that cycle

→Would cause a pipeline “bubble”

• Hence, pipelined datapaths require

separate instruction/data memories

(or separate instruction/data caches)

▪ Register file also requires multiple

ports (for 2 reads and 1 write)

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

Register write

Register read

Memory read

Memory read/write

Data Hazards

Chap. 4.7

4190.308: Computer Architecture | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 5

▪ An instruction depends on completion of data access by a previous

instruction

▪ Also called “Read-After-Write (RAW)” hazard

▪ This hazard results from an actual need for communication

sub x2, x19, x3

add x19, x0, x1

4190.308: Computer Architecture | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 6

▪ Freezing the pipeline

▪ Forwarding

▪ Compiler scheduling

▪ Out-Of-Order execution (discussed later)

4190.308: Computer Architecture | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 7

▪ Stall the pipeline until dependences are resolved

▪ ALU result to next instruction (2 stalls)

sub x2, x19, x3

add x19, x0, x1

4190.308: Computer Architecture | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 8

▪ Use result when it is computed

• Don’t wait for it to be stored in a register

• Requires extra connections in the datapath

sub x2, x19, x3

add x19, x0, x1

4190.308: Computer Architecture | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 9

▪ Can’t always avoid stalls by forwarding

• If value not computed when needed

• Can’t forward backward in time!

sub x4, x1, x5

ld x1, 0(x2)

4190.308: Computer Architecture | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 10

add x10, x4, x5

sub x6, x10, x4

and x7, x10, x0

xor x8, x10, x3

4190.308: Computer Architecture | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 11

add x10, x4, x5

sub x10, x5, x6

addi x10, x2, 1

xor x8, x10, x7

x

x

o

4190.308: Computer Architecture | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 12

▪ Reorder code to avoid use of load result in the next instruction

▪ C code for v[3] = v[0] + v[1]; v[4] = v[0] + v[2];

ld x1, 0(x0)

ld x2, 8(x0)

add x3, x1, x2

sd x3, 24(x0)

ld x4, 16(x0)

add x5, x1, x4

sd x5, 32(x0)

ld x1, 0(x0)

ld x2, 8(x0)

ld x4, 16(x0)

add x3, x1, x2

sd x3, 24(x0)

add x5, x1, x4

sd x5, 32(x0)

13 cycles 11 cycles

Stall

Stall

4190.308: Computer Architecture | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 13

▪ Consider this sequence:

▪ We can resolve hazards with forwarding

• How do we detect when to forward?

sub x2, x1, x3
and x12, x2, x5
or x13, x6, x2
add x14, x2, x2
sd x15, 100(x2)

4190.308: Computer Architecture | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 14

4190.308: Computer Architecture | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 15

▪ Pass register numbers along pipeline

• e.g., ID/EX.RegisterRs1 = register # for Rs1 sitting in ID/EX pipeline register

▪ ALU operand register numbers in EX stage are given by

• ID/EX.RegisterRs1, ID/EX.RegisterRs2

▪ Data hazards when

EX/MEM.RegisterRd = ID/EX.RegisterRs1

EX/MEM.RegisterRd = ID/EX.RegisterRs2

MEM/WB.RegisterRd = ID/EX.RegisterRs1

MEM/WB.RegisterRd = ID/EX.RegisterRs2

Forward from
EX/MEM pipeline
register

Forward from
MEM/WB pipeline
register

4190.308: Computer Architecture | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 16

▪ But only if forwarding instruction will write to a register!

▪ And only if Rd for that instruction is not x0

EX/MEM.RegWrite, MEM/WB.RegWrite

EX/MEM.RegisterRd ≠ 0,

MEM/WB.RegisterRd ≠ 0

4190.308: Computer Architecture | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 17

00

01

10

00

01

10

4190.308: Computer Architecture | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 18

▪ EX hazard

▪ MEM hazard

if (EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0)

and (EX/MEM.RegisterRd = ID/EX.RegisterRs1))

forwardA = 10

if (EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0)

and (EX/MEM.RegisterRd = ID/EX.RegisterRs2))

forwardB = 10

if (MEM/WB.RegWrite and (MEM/WB.RegisterRd ≠ 0)

and (MEM/WB.RegisterRd = ID/EX.RegisterRs1))

forwardA = 01

if (MEM/WB.RegWrite and (MEM/WB.RegisterRd ≠ 0)

and (MEM/WB.RegisterRd = ID/EX.RegisterRs2))

forwardB = 01

4190.308: Computer Architecture | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 19

MUX control Source Example

ForwardA = 00 ID/EX The first ALU operand comes from the register file.

ForwardA = 10 EX/MEM
The first ALU operand is forwarded from the prior ALU
result.

ForwardA = 01 MEM/WB
The first ALU operand is forwarded from data memory or
an earlier ALU result.

ForwardB = 00 ID/EX The second ALU operand comes from the register file.

ForwardB = 10 EX/MEM
The second ALU operand is forwarded from the prior ALU
result.

ForwardB = 01 MEM/WB
The second ALU operand is forwarded from data memory
or an earlier ALU result.

4190.308: Computer Architecture | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 20

▪ Consider this sequence:

▪ Both hazards occur

• Want to use the most recent

▪ Revise MEM hazard condition

• Only forward if EX hazard condition isn’t true

add x1, x1, x2
add x1, x1, x3
add x1, x1, x4

4190.308: Computer Architecture | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 21

▪ MEM hazard

if (MEM/WB.RegWrite

and (MEM/WB.RegisterRd ≠ 0)

and not (EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0)

and (EX/MEM.RegisterRd = ID/EX.RegisterRs1))

and (MEM/WB.RegisterRd = ID/EX.RegisterRs1))

forwardA = 01

if (MEM/WB.RegWrite

and (MEM/WB.RegisterRd != 0)

and not (EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0)

and (EX/MEM.RegisterRd = ID/EX.RegisterRs2))

and (MEM/WB.RegisterRd = ID/EX.RegisterRs2))

forward = 01

4190.308: Computer Architecture | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 22

4190.308: Computer Architecture | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 23

4190.308: Computer Architecture | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 24

Can’t go
backward here

4190.308: Computer Architecture | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 25

▪ Check when using instruction is decoded in ID stage

▪ ALU operand register numbers in ID stage are given by

• IF/ID.RegisterRs1, IF/ID.RegisterRs2

▪ Load-use hazard when

▪ If detected, stall and insert bubble

ID/EX.MemRead and

((ID/EX.RegisterRd = IF/ID.RegisterRs1) or

(ID/EX.RegisterRd = IF/ID.RegisterRs2))

4190.308: Computer Architecture | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 26

▪ Force control values in ID/EX register to 0

• EX, MEM and WB do nop (no-operation)

▪ Prevent update of PC and IF/ID register

• Using instruction is decoded again

• Following instruction is fetched again

• 1-cycle stall allows MEM to read data for ld
→ Can subsequently forward to EX stage

4190.308: Computer Architecture | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 27

State = x
Rising
clockOutput = xInput = y

State = y

Output = y

stall = 0 bubble = 0

x yNormal

State = x
Rising
clockOutput = xInput = y

State = x

Output = x

stall = 1 bubble = 0

x xStall

n
o
p

State = x
Rising
clockOutput = xInput = y

State = nop

Output = nop

stall = 0 bubble = 1

xBubble

4190.308: Computer Architecture | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 28

Stall inserted
here

4190.308: Computer Architecture | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 29

4190.308: Computer Architecture | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 30

▪ Stalls reduce performance

• But are required to get correct results

▪ Compiler can arrange code to avoid hazards and stalls

• Requires knowledge of the pipeline structure

Control Hazards

Chap. 4.8

4190.308: Computer Architecture | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 32

▪ Branch determines flow of control

• Fetching next instruction depends on branch outcome

• Pipeline can’t always fetch correct instruction: still working on ID stage of branch

▪ In RISC-V pipeline

• Need to compare registers and compute target early in the pipeline

• Add hardware to do it in ID stage

4190.308: Computer Architecture | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 33

▪ Stall on branch

▪ Branch prediction

▪ Delayed branch (compiler scheduling to avoid stalls)

4190.308: Computer Architecture | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 34

▪ Wait until branch outcome determined before fetching next instruction

4190.308: Computer Architecture | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 35

▪ Longer pipelines can’t readily determine branch outcome early

• Stall penalty becomes unacceptable

▪ Predict outcome of branch

• Only stall if prediction is wrong

▪ In RISC-V pipeline

• Can predict branches not taken

• Fetch instruction after branch, with no delay

• Cancel the fetched instruction if the prediction was wrong

4190.308: Computer Architecture | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 36

▪ Static branch prediction

• Based on typical branch behavior

• Example: loop and if-statement branches

– Predict backward branches taken

– Predict forward branches not taken

▪ Dynamic branch prediction

• Hardware measures actual branch behavior

– e.g., record recent history of each branch

• Assume future behavior will continue the trend

– When wrong, stall while re-fetching and update history

4190.308: Computer Architecture | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 37

▪ If branch outcome determined in MEM (with always-not-taken prediction)

Flush these
instructions
(Set control
values to 0)

4190.308: Computer Architecture | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 38

▪ Move hardware to determine outcome to ID stage

• Target address adder

• Register comparator

▪ Example: branch taken

36: sub x10, x4, x8
40: beq x1, x3, 16 // PC-relative branch to 40+16*2 = 72
44: and x12, x2, x5
48: or x13, x2, x6
52: add x14, x4, x2
56: sub x15, x6, x7

...
72: ld x4, 50(x7)

4190.308: Computer Architecture | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 39

4190.308: Computer Architecture | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 40

4190.308: Computer Architecture | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 41

▪ Register operands may require forwarding

• New forwarding logic from EX/MEM or MEM/WB pipeline registers to ID needed

▪ Stalls due to data hazard

• 1-cycle stall if the preceding

instruction is an ALU instruction

• 2-cycle stall if the preceding

instruction is the load instruction

add x3,x4,x5

beq x8,x3,10

IF ID EX MEM WB

IF ID ID EX MEM WB

ld x3,0(x4)

beq x8,x3,10

IF ID EX MEM WB

IF ID ID ID EX MEM WB

4190.308: Computer Architecture | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 42

▪ In deeper and superscalar pipelines, branch penalty is more significant

▪ Use dynamic prediction

• Branch prediction buffer (or branch history table)

• Indexed by recent branch instruction addresses

• Stores outcome (taken / not taken)

▪ To execute a branch

• Check table, expect the same outcome

• Start fetching from fall-through or target

• If wrong, flush pipeline and flip prediction

4190.308: Computer Architecture | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 43

▪ Inner loop branches mispredicted twice!

• Mispredict as taken on last iteration of inner loop

• Then mispredict as not taken on first iteration of inner loop next time around

outer: ...
...

inner: ...
...
beq .., .., inner
...
beq .., .., outer

4190.308: Computer Architecture | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 44

▪ Only change prediction on two successive mispredictions

4190.308: Computer Architecture | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 45

▪ Even with predictor, still need to calculate the target address

• 1-cycle penalty for a taken branch

▪ Branch target buffer (BTB)

• Cache of target addresses

• Indexed by PC when instruction fetched

• If hit and instruction is branch predicted taken, can fetch target immediately

4190.308: Computer Architecture | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 46

▪ Pipelining improves performance by increasing instruction throughput

• Executes multiple instructions in parallel

• Each instruction has the same latency

▪ Subject to hazards

• Structural, data, control

▪ Instruction set design affects complexity of pipeline implementation

