
4190.308:

Computer Architecture

Jin-Soo Kim
(jinsoo.kim@snu.ac.kr)

Systems Software &
Architecture Lab.

Seoul National University

Fall 2020



4190.308: Computer Architecture | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 2

▪ Schedule

• 11:00 – 12:15 (Monday & Wednesday)

• Lecture room: Engineering Bldg.  #302-208 (Online lecture using Zoom)

• 3 credits

• Official language: English

▪ TA:  Injae Kang (abcinje@snu), Sunmin Jeong (sunnyday0208@snu)

▪ SNU eTL system for exam/project scores

▪ http://csl.snu.ac.kr/ for announcements and lecture slides

▪ http://sys.snu.ac.kr for project submissions and automatic grading

http://csl.snu.ac.kr/courses/4190.308/2020-2/
http://sys.snu.ac.kr/


4190.308: Computer Architecture | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 3

▪ Jin-Soo Kim (김진수)

• Professor @ CSE Dept. 

• Systems Software & Architecture Laboratory

• Operating systems, storage systems, parallel and distributed computing, embedded 

systems, …

▪ E-mail: jinsoo.kim@snu.ac.kr

▪ Tel: 02-880-7302

▪ Office: Engineering Bldg. #301-520  (office hours: Monday & Wednesday)

▪ The best way to contact me is by email

mailto:jinsoo.kim@snu.ac.kr


4190.308: Computer Architecture | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 4

▪ It’s an introductory course

• Introduction to Computers? 

• About 20% of students have dropped every semester

▪ It’s all about hardware

• It’s about how to separate work between software and hardware, and about how 

to design the interface between them

▪ It’s not relevant for software engineers

• Writing good software requires understanding details of underlying implementation

▪ Who needs to know the assembly language these days?

• Well, you’ll see



4190.308: Computer Architecture | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 5

▪ Prerequisites

• Programming Practice (4190.103A) – C programming

• Logic Design (M1522.000700) – Must!

• Data Structure (M1522.000900) – Recommended

▪ You should be familiar with the followings:

• Shells and basic Linux commands

• C (and Python!) programming skills 

• Basic knowledge on digital circuits and systems

▪ Accessible Linux (Ubuntu 18.04.3 LTS or similar) or MacOS machine



4190.308: Computer Architecture | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 6

▪ Computer Organization and Design: 

The Hardware/Software Interface

(RISC-V Edition)

• David A. Patterson and John L. Hennessy

(Turing Award Recipients in 2017)

• First Edition

• Morgan Kaufmann, 2017

• http://booksite.elsevier.com/9780128122754/

• Note:  There are also MIPS and ARM editions

http://booksite.elsevier.com/9780128122754/


4190.308: Computer Architecture | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 7

▪ Computer Systems: 

A Programmer’s Perspective

• Randal E. Bryant and David R. O’Hallaron

• Third Edition

• Pearson Education Limited, 2016

• Based on x86-64

• http://csapp.cs.cmu.edu

http://csapp.cs.cmu.edu/


4190.308: Computer Architecture | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 8

▪ Computer Architecture:

A Quantitative Approach

• John L. Hennessy and David A. Patterson 

• Sixth Edition

• Morgan Kaufmann, 2017

• http://booksite.elsevier.com/9780128119051

http://booksite.elsevier.com/9780128119051


4190.308: Computer Architecture | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 9

▪ Introduction to Computer Architecture

▪ Integers and Floating Points

▪ RISC-V Instruction Set Architecture

▪ Sequential Architecture

▪ Pipelined Architecture

▪ Cache

▪ Virtual memory

▪ I/O 

▪ Parallel Computer Architecture



4190.308: Computer Architecture | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 10

▪ C programming

▪ RISC-V assembly programming

▪ Designing pipelined processor

▪ Optimizing RISC-V assembly programs for pipelined processor

▪ Cache simulation



4190.308: Computer Architecture | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 11

▪ We will use pyrisc, a RISC-V simulator written in Python

▪ You are required to 

modify the simulator

▪ Available at
https://github.com/snu-csl/pyrisc

https://github.com/snu-csl/pyrisc


4190.308: Computer Architecture | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 12

▪ Exams: 60%

• Midterm: 25%

• Final: 35%

▪ Projects: 40%

▪ University policy requires students to attend at least 2/3 of the 

scheduled classes. Otherwise, you’ll fail this course.

▪ We are using the electronic attendance system via eTL.

▪ Also, if you miss one of the exams, you’ll fail this course. 



4190.308: Computer Architecture | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 13

▪ What is cheating?

• Copying another student’s solution (or one from the Internet) and submitting it as 

your own

• Allowing another student to copy your solution

▪ What is NOT cheating?

• Helping others use systems or tools

• Helping others with high-level design issues

• Helping others debug their code

▪ Penalty for cheating

• Severe penalty on the grade (F) and report to the dept. chair

• Ask helps to your TA or instructor if you experience any difficulty!



What and Why?



4190.308: Computer Architecture | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 15

▪ NAND logic built with CMOS technology

Source: https://en.wikipedia.org/wiki/NAND_gate

http://upload.wikimedia.org/wikipedia/commons/e/e2/CMOS_NAND.svg
http://upload.wikimedia.org/wikipedia/commons/8/8f/CMOS_NAND_Layout.svg


4190.308: Computer Architecture | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 16

Programming languages (e.g., C)

Data structures & algorithms

Digital logic

Transistors

Software

Hardware

Application programs

?



4190.308: Computer Architecture | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 17

Programming languages (e.g., C)

Data structures & algorithms

Digital logic

Transistors

Software

Hardware

Application programs

Architecture (or Instruction Set Architecture)
Interface between 
software and hardware



4190.308: Computer Architecture | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 18

▪ Choices critically affect both the software programmer and hardware 

designer

▪ Example:  Copying n bytes from address A to B

▪ Trade-offs:  code size, compiler complexity, operating frequency, number 

of cycles to execute, hardware complexity, energy consumption, etc.

movq A, %rsi
movq B, %rdi
movq n, %rcx
REP MOVS

la     a0, A
la     a1, B
li     a2, n
add    a3, a0, a2

L0:
lbu a4, 0(a0)
sbu a4, 0(a1)
addi a0, a0, 1
addi a1, a1, 1
bne a0, a3, L0

x86_64 (CISC) RISC-V (RISC)



4190.308: Computer Architecture | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 19

▪ Microarchitectures: Where should you spend transistors to run your 

program faster with conforming to the given interface?

Source: https://en.wikichip.org/wiki/intel/core_i9/i9-9900k, https://en.wikichip.org/wiki/apple/ax/a12x

Intel Core i9-9900K (Coffee Lake, 2018)

Transistors: ~ 3B (14nm), Die size: ~ 177mm2

Apple A12X Bionic (2018)

Transistors: ~ 10B (7nm), Die size: ~ 122mm2



4190.308: Computer Architecture | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 20

▪ It's just too slow!

0.0

0.1

1.0

10.0

100.0

1,000.0

10,000.0

100,000.0

1,000,000.0

10,000,000.0

100,000,000.0

1985 1990 1995 2000 2003 2005 2010 2015

T
im

e
 (

n
s

)

Year

Disk seek time

SSD access time

DRAM access time

SRAM access time

CPU cycle time

Effective CPU cycle time
DRAM

CPU

SSD

Disk



4190.308: Computer Architecture | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 21

Programming languages (e.g., C)

Data structures & algorithms

Digital logic

Transistors

Software

Hardware

Application programs

Architecture
Interface between 
software and hardware

Microarchitecture



4190.308: Computer Architecture | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 22

Operating system

Architecture

Compilers, linkers, libraries

Programming languages (e.g., C)

Data structures & algorithms

Microarchitecture

Hardware description languages

Digital logic

Transistors

Processing, Fabrication

Chemistry, Physics

Software

Hardware

Interface between 
software and hardware

Application programs



4190.308: Computer Architecture | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 23

▪ Abstraction helps us deal with complexity

• Hide lower-level details

▪ These abstractions have limits

• Especially in the presence of bugs

• Need to understand details of underlying implementations

▪ What is the right place to solve the problem?

▪ This is why you should take this course seriously 

even if you don’t want to be a computer architect!

Operating system

Architecture

Compilers, linkers, libraries

Programming languages (e.g., C)

Data structures & algorithms

Microarchitecture

Hardware description languages

Digital logic

Transistors

Processing, Fabrication

Chemistry, Physics

Application programs



4190.308: Computer Architecture | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 24

▪ Is x2 ≥ 0?

• Float’s:  ??

• Int’s:  ??

▪ Is (x + y) + z == x + (y + z)?

• Unsigned & Signed Int’s:  ??

• Float’s:  ??
float x = 1e20, y = -1e20, z = 3.14;
printf (“%s\n”, (x+y)+z==x+(y+z)? “Yes” : “No”);

int x = 50000;
printf (“%s\n”, (x*x >= 0)? “Yes” : “No”);



4190.308: Computer Architecture | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 25

CPU
Clock

Speed
SPECint2000 SPECfp2000

Athlon 64 FX-55 2.6GHz 1854 1782

Pentium 4 Extreme Edition 3.46GHz 1772 1724

Pentium 4 Prescott 3.8GHz 1671 1842

Opteron 150 2.4GHz 1655 1644

Itanium 2 9MB 1.6GHz 1590 2712

Pentium M 755 2.0GHz 1541 1088

POWER5 1.9GHz 1452 2702

SPARC64 V 1.89GHz 1345 1803

Athlon 64 3200+ 2.2GHz 1080 1250

Alpha 21264C 1.25GHz 928 1019



4190.308: Computer Architecture | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 26

▪ There’s more to performance than asymptotic complexity

▪ Array copy example

void copyij (int src[2048][2048],
int dst[2048][2048])

{
int i, j;
for (i = 0; i < 2048; i++)
for (j = 0; j < 2048; j++)

dst[i][j] = src[i][j];
}

void copyji (int src[2048][2048],
int dst[2048][2048])

{
int i, j;
for (j = 0; j < 2048; j++)
for (i = 0; i < 2048; i++)

dst[i][j] = src[i][j];
}

4.3 ms 81.8 ms

copyji() is 20x slower on 2.0GHz Intel Core i7 Haswell. Why? 



4190.308: Computer Architecture | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 27

▪ Memory referencing bug example

$ ./bufdemo
Type:012
012

$ ./bufdemo
Type: 01234567890123456789012
01234567890123456789012

$ ./bufdemo
Type: 012345678901234567890123
Segmentation fault (core dumped)

/* Echo Line */
void echo()
{

// Way too small! 
char buf[4]; 
gets(buf);
puts(buf);

}

int main() 
{

printf(“Type: “);
echo();
return 0;

}



4190.308: Computer Architecture | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 28

▪ How data are represented?

▪ How programs are translated into the machine language

• And how the hardware executes them

▪ The hardware/software interface – Instruction Set Architecture (ISA)

▪ What determines program performance

▪ How hardware designers / software developers improve performance 

▪ What is parallel processing



4190.308: Computer Architecture | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 29

▪ Design for Moore’s Law

▪ Use abstraction to simplify design

▪ Make the common case fast

▪ Performance via parallelism

▪ Performance via pipelining

▪ Performance via prediction

▪ Hierarchy of memories

▪ Dependability via redundancy



4190.308: Computer Architecture | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 30

▪ Look backward (to the past)
• Understand tradeoffs and designs, upsides/downsides, past workloads

• Analyze and evaluate the past

▪ Look forward (to the future)
• Be the dreamer and create new designs. Listen to dreamers

• Push the state of the art. Evaluate new design choices

▪ Look up (towards problems in the computing stack)
• Understand important problems and their nature

• Develop architectures and ideas to solve important problems

▪ Look down (towards device/circuit technology)
• Understand the capabilities of the underlying technology

• Predict and adapt to the future of technology. Enable the future technology
Borrowed from Onur Mutlu's 18-447 lecture Slides



4190.308: Computer Architecture | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 31

▪ To graduate!

▪ To design the next great instruction set?  Well…

• ISA has largely converged, especially in desktop / server / laptop / mobile space

• Dictated by powerful market forces (Intel/ARM and RISC-V?)

▪ To get a job in Intel, NVIDIA, ARM, Apple, Qualcomm, Google, …

• Tremendous organizational innovations relative to established ISA abstractions

▪ Design, analysis, and implementation concepts that you’ll learn are vital 

to all aspects of computer science and engineering

▪ This course will equip you with an intellectual toolbox for dealing with a 

host of systems design challenges

▪ And finally, just for fun! 
Partially borrowed from David Culler’s CS252 lecture slides



4190.308: Computer Architecture | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 32

▪ Modern Computer Architecture is about managing and optimizing across 

several levels of abstraction w.r.t. dramatically changing technology and 

application load

▪ This course focuses on

• RISC-V Instruction Set Architecture (ISA) – A new open interface

• An implementation based on Pipelining (Microarchitecture) – how to make it faster?

• Memory hierarchy – How to make trade-offs between performance and cost?

▪ Understanding Computer Architecture is vital to other “systems” courses:

• System programming, Operating systems, Compilers, Embedded systems, Computer 

networks, Multicore computing, Distributed systems, Mobile computing, Security, 

Machine learning, Quantum computing, etc.


