Jin-Soo Kim
(jinsoo.kim@snu.ac.kr)

Systems Software &
Architecture Lab.

Seoul National University

Fall 2020

4190.308:
Computer Architecture

Course Information

Schedule
* [1:00 - 12:15 (Monday & Wednesday)

* Lecture room: Engineering Bldg—#302-208 (Online lecture using Zoom)

* 3 credits
* Official language: English

TA: Injae Kang (abcinje@snu), Sunmin Jeong (sunnyday0208@snu)
SNU eTL system for exam/project scores

http://csl.snu.ac.kr/ for announcements and lecture slides

http://sys.snu.ac.kr for project submissions and automatic grading

http://csl.snu.ac.kr/courses/4190.308/2020-2/
http://sys.snu.ac.kr/

About Me

= Jin-Soo Kim (&2l)
* Professor @ CSE Dept.
* Systems Software & Architecture Laboratory

* Operating systems, storage systems, parallel and distributed computing, embedded
systems, ...

* E-mail: jinsoo.kim@snu.ac.kr

= Tel:02-880-7302
= Office: Engineering Bldg. #301-520 (office hours: Monday & Wednesday)

* The best way to contact me is by email

mailto:jinsoo.kim@snu.ac.kr

Myths About This Course

" |t’s an introductory course

* Introduction to Computers!?
* About 20% of students have dropped every semester

= |t’s all about hardware

* It’s about how to separate work between software and hardware, and about how
to design the interface between them

" |t’s not relevant for software engineers
* Writing good software requires understanding details of underlying implementation

* Who needs to know the assembly language these days?
* Well, you’ll see

Prerequisites

" Prerequisites
* Programming Practice (4190.103A) — C programming
* Logic Design (M1522.000700) — Must!
* Data Structure (M1522.000900) — Recommended

" You should be familiar with the followings:
* Shells and basic Linux commands
* C (and Python!) programming skills

* Basic knowledge on digital circuits and systems

" Accessible Linux (Ubuntu 18.04.3 LTS or similar) or MacOS machine

Textbook

= Computer Organization and Design:

The Hardware/Software Interface
(RISC-V Edition)

* David A. Patterson and John L. Hennessy
(Turing Award Recipients in 2017)

* First Edition

* Morgan Kaufmann, 2017
* http://booksite.elsevier.com/9780128122754/

* Note: There are also MIPS and ARM editions

http://booksite.elsevier.com/9780128122754/

Previous Textbook

= Computer Systems:
A Programmer’s Perspective

Randal E. Bryant and David R. O’Hallaron
Third Edition

* Pearson Education Limited, 2016
+ Based on x86-64 Computer Systems
A Programmer’s Perspective.
1 E. Bryant * David R. O'
* http://csapp.cs.cmu.edu ey M'Bm 'D‘_d_;_. H‘"m

ALWAYS COARIONG PEARSON

http://csapp.cs.cmu.edu/

Reference

= Computer Architecture: o
A Quantitative Approach

nessy | Da

COMPUTER

John L. Hennessy and David A. Patterson

* Sixth Edition ARCHITECTURE
° Morgan Kanmann, 2017 A Quantitative Approach

http://booksite.elsevier.com/97801281 19051

4190.308: Computer Architecture | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

http://booksite.elsevier.com/9780128119051

Topics

" |ntroduction to Computer Architecture
* |ntegers and Floating Points

= RISC-V Instruction Set Architecture

* Sequential Architecture

" Pipelined Architecture

= Cache

" Virtual memory

= |/O

* Parallel Computer Architecture

Project Topics (subject to change)

= C programming

= RISC-V assembly programming

* Designing pipelined processor

* Optimizing RISC-V assembly programs for pipelined processor

= Cache simulation

Why Python!

" We will use pyrisc,a RISC-V simulator written in Python

) GitHub - snu-csl/pyrisc: The Edi X +

= C @& github.com

" You are required to i O
modify the simulator

pipe5 use /usr/binfenv 19 days ago
sim use /usr/binfenv 19 days ago
[.gitignore fix filename .gitignore 10 months ago
M LICENSE initial release 10 months ago

L[]
. / \val Iab I e at [README.md renamed elftools to pyelftools 10 months ago

https://github.com/snu-csl/pyrisc
The PyRISC Project

Introduction

The PyRISC project aims at providing various RISC-V toolset written in Python for
educational purposes. It includes the RISC-V instruction set simulator and pipelined RISC-V
processor simulators. All the simulators accept the executable file compiled with the
standard GNU toolchain that supports RV32l base instruction set. Some of instructions are
intentionally left unimplemented for class projects.

The Educational RISC-V Toolset
in Python

00 Readme

88 BSD-3-Clause License

Releases

No releases published

Packages

No packages published

Languages
— .
® Python 94.2%

® Assembly 4.3%

® Makefile 1.5%

11

https://github.com/snu-csl/pyrisc

Grading Policy (subject to change)

= Exams: 60%
 Midterm: 25%
* Final: 35%

" Projects: 40%

= University policy requires students to attend at least 2/3 of the
scheduled classes. Otherwise, you'll fail this course.

" We are using the electronic attendance system via eTL.

= Also, if you miss one of the exams, you'll fail this course.

Cheating Policy

* What is cheating!

* Copying another student’s solution (or one from the Internet) and submitting it as
your own

* Allowing another student to copy your solution

* What is NOT cheating?

* Helping others use systems or tools
* Helping others with high-level design issues
* Helping others debug their code

" Penalty for cheating
* Severe penalty on the grade (F) and report to the dept. chair
* Ask helps to your TA or instructor if you experience any difficulty!

4190.308: Computer Architecture | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

13

What and Why!

Transistors and Logic Gates

* NAND logic built with CMOS technology

vdd Vdd

o =

IIIIIIIIII

o] o =
e B

P

9]

=

=

Vss

http://upload.wikimedia.org/wikipedia/commons/e/e2/CMOS_NAND.svg
http://upload.wikimedia.org/wikipedia/commons/8/8f/CMOS_NAND_Layout.svg

How To Run Your Program!?

Application programs
Data structures & algorithms

Programming languages (e.g., C)

?

Digital logic

Transistors

Software

:| Hardware

16

Architecture

Application programs
Data structures & algorithms

Programming languages (e.g., C)

Architecture (or Instruction Set Architecture) |:>

Digital logic

Transistors

Software

Interface between
software and hardware

Hardware

17

Topic |: How To Design Interface?

= Choices critically affect both the software programmer and hardware
designer

= Example: Copying n bytes from address A to B

x86_64 (CISC) RISC-V (RISC)
LO:
movq A, %rsi la a0, A 1bu a4, 0(ao)
movq B, %rdi la al, B sbu a4, 0(al)
mov(q n, %rcx 1i a2, n addi a0, a0, 1
REP MOVS add a3, aod, a2 addi al, al, 1
bne ad, a3, Lo

* Trade-offs: code size, compiler complexity, operating frequency, number
of cycles to execute, hardware complexity, energy consumption, etc.

18

Topic 2: How To Implement?

= Microarchitectures: Where should you spend transistors to run your
program faster with conforming to the given interface!

Intel Core i9-9900K (Coffee Lake, 2018) Apple A12X Bionic (2018)

Transistors: ~ 10B (7nm), Die size: ~ 122mm?

Transistors: ~ 3B (14nm), Die size: ~ 177mm?

GPU Core0 GPU Core4 T"g‘ggs‘ T"g‘ggs*
Tempest Tempest
% o ﬁ C P U EJ % c P U & % C P U {: GPU Corel GPU Core5 CPU CPU
© Og O Og 0
¢ Core 25 Core :% Core :° Core & GPU Core2 GPU Cores
2 [[[J ()
GPU Core3 CC e
: i ;] : | : |
Ring Intcnt. Ring Intcnt: Ring Intcnt. IRing Intcht.
sl sl BRond o Sysam ache
\ Al ISP
(V) r o r o r o ™
: i it i H NPU
© © T © -
! CPU £ CPU £8 CPU 3/CPU ¢
Core °~ Core "~ Core °~ Core e
| Control MCU | | Always-on MCU | e os.,tomr,';?;, Display Engine
| Secure Enclave (SEP) | I“"“s“”"’“'"|

4190.308: Computer Architecture | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

Source: https://en.wikichip.org/wiki/intel/core_19/19-9900k, https://en.wikichip.org/wiki/apple/ax/a12x

19

Topic 3:What About the Memory!?

" |t's just too slow!

100,000,000.0

10,000,000.0

. Disk

1,000,000.0

100,000.0 ..
SSD

10,000.0 —e—Disk seek time
—&—SSD access tifhe
—&-DRAM access time
100.0 =~ —8—SRAM access time

-+ CPU cycle time
10.0 \ DRAM

1,000.0

Time (ns)

: \ —-O—Effective CPU cycle time
1.0

T~ CPU

0.1

0.0 T T T T T T T 1
1985 1990 1995 2000 2003 2005 2010 2015
Year

4190.308: Computer Architecture | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

20

The Scope of This Course

Application programs

Data structures & algorithms

Programming languages (e.g., C)

|
| Architecture —
|
|
|

1
1
Microarchitecture I

Digital logic
Transistors

Software

Interface between
software and hardware

Hardware

21

Full Levels of Abstraction

Application programs
Data structures & algorithms
Programming languages (e.g., C)
Compilers, linkers, libraries

__________________ Operating system_________________

| —
i Architecture)
|

|

|

Microarchitecture
Hardware description languages
Digital logic
Transistors
Processing, Fabrication

Chemistry, Physics

Software

Interface between
software and hardware

Hardware

22

Abstraction is Good, But ...

= Abstraction helps us deal with complexity

Application programs
 Hide lower-level details

Data structures & algorithms
Programming languages (e.g., C)

" These abstractions have limits eernsters il e

* Especially in the presence of bugs Operating system
* Need to understand details of underlying implementations

Microarchitecture
. . Hardware description languages
* What is the right place to solve the problem?

Digital logic

Transistors

= This is why you should take this course seriously procoumm——
even if you don’t want to be a computer architect! Chemistry, Physics

23

Example #1:Int’s # Integers, Float’s # Reals

= |s x?22=0?
* Float’s: 7?
’ int x = 50000;
* Int’s: ?? printf (“%s\n”, (x*x >= 0)? “Yes” : “No”);

" |s(x+y)t+tz==x+(y+ z)!
* Unsigned & Signed Int’s: ??

* Float’s: ??
float x = 1e20, y = -1e20, z = 3.14;
printf (“%s\n”, (x+y)+z==x+(y+z)? “Yes” : “No”);

4190.308: Computer Architecture | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

24

Example #2: More Than Just GHz

CPU Clock SPECint2000 SPECfp2000
Speed
Athlon 64 FX-55 2.6GHz 1854 1782
Pentium 4 Extreme Edition 3.46GHz 1772 1724
Pentium 4 Prescott 3.8GHz 1671 1842
Opteron 150 2.4GHz 1655 1644
Itanium 2 9MB 1.6GHz 1590 2712
Pentium M 755 2.0GHz 1541 1088
POWERS5 1.9GHz 1452 2702
SPARC64 V 1.89GHz 1345 1803
Athlon 64 3200+ 2.2GHz 1080 1250
Alpha 21264C 1.25GHz 928 1019

Example #3: Constant Factors Matter

* There’s more to performance than asymptotic complexity

= Array copy example

void copyij (int src[2048][2048], void copyji (int src[2048][2048],
int dst[2048][2048]) int dst[2048][2048])

{ {
int i, j; int i, j;
for (j = ©; j < 2048; j++)
for (j = ©0; j < 2048; j++)
dst[i][J] = src[i][]]; dst[i][j] = src[i][3];

4.3 ms 81.8 ms

copyji() is 20x slower on 2.0GHz Intel Core i7 Haswell. Why?

26

Example #4: Memory Matters

* Memory referencing bug example

/* Echo Line */

void echo()

{
// Way too small!
char buf[4];
gets(buf);
puts(buf);

}

int main()

{
printf(“Type: “);
echo();
return 0;

$./bufdemo
Type:012
012

$./bufdemo
Type: 01234567890123456789012
01234567890123456789012

$./bufdemo
Type: 012345678901234567890123
Segmentation fault (core dumped)

27

What You Will Learn

* How data are represented?

* How programs are translated into the machine language

* And how the hardware executes them
* The hardware/software interface — Instruction Set Architecture (ISA)
* What determines program performance

* How hardware designers / software developers improve performance

" What is parallel processing

Eight Great ldeas in Computer Architecture

Design for Moore’s Law

Use abstraction to simplify design
Make the common case fast
Performance via parallelism
Performance via pipelining
Performance via prediction
Hierarchy of memories

Dependability via redundancy

4190.308: Computer Architecture | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

29

Role of The (Computer) Architect

* | ook backward (to the past)
* Understand tradeoffs and designs, upsides/downsides, past workloads
* Analyze and evaluate the past

* ook forward (to the future)
* Be the dreamer and create new designs. Listen to dreamers
* Push the state of the art. Evaluate new design choices

* | ook up (towards problems in the computing stack)
* Understand important problems and their nature
* Develop architectures and ideas to solve important problems

* | ook down (towards device/circuit technology)
* Understand the capabilities of the underlying technology
* Predict and adapt to the future of technology. Enable the future technology

Borrowed from Onur Mutlu's 18-447 lecture Slides
4190.308: Computer Architecture | Fall 2020 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 30

Why Take This Course!?

* To graduate!

* To design the next great instruction set! Well...
* ISA has largely converged, especially in desktop / server / laptop / mobile space
* Dictated by powerful market forces (Intel/ARM and RISC-V?)

* To get a job in Intel, NVIDIA,ARM, Apple, Qualcomm, Google, ...

* Tremendous organizational innovations relative to established ISA abstractions

* Design, analysis, and implementation concepts that you’'ll learn are vital
to all aspects of computer science and engineering

* This course will equip you with an intellectual toolbox for dealing with a
host of systems design challenges

* And finally, just for fun!

31

Summary

* Modern Computer Architecture is about managing and optimizing across
several levels of abstraction w.r.t. dramatically changing technology and
application load

= This course focuses on
* RISC-V Instruction Set Architecture (ISA) —A new open interface
* An implementation based on Pipelining (Microarchitecture) — how to make it faster?
* Memory hierarchy — How to make trade-offs between performance and cost!?

* Understanding Computer Architecture is vital to other “systems” courses:

* System programming, Operating systems, Compilers, Embedded systems, Computer
networks, Multicore computing, Distributed systems, Mobile computing, Security,
Machine learning, Quantum computing, etc.

32

