
Virtual Memory

Jin-Soo Kim
(jinsoo.kim@snu.ac.kr)

Systems Software &
Architecture Lab.

Seoul National University

Fall 2019

Chap. 5.7 – 5.8, 5.13, 5.16 – 5.17

4190.308: Computer Architecture | Fall 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 2

▪ Example

#include <stdio.h>

int n = 0;

int main ()
{

n++;
printf (“&n = %p, n = %d\n”, &n, n);

}

% ./a.out
&n = 0x0804a024, n = 1
% ./a.out
&n = 0x0804a024, n = 1

4190.308: Computer Architecture | Fall 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 3

▪ Used in “simple” systems like embedded microcontrollers

• Cars, elevators, digital cameras, etc.

0:
1:

M-1:

Main memory

CPU

2:
3:
4:
5:
6:
7:

Physical address
(PA)

Data word

8: ...

4

4190.308: Computer Architecture | Fall 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 4

▪ Used in all modern servers, laptops, and smartphones

▪ One of the great ideas in computer science

0:
1:

M-1:

Main memory

MMU

2:
3:
4:
5:
6:
7:

Physical address
(PA)

Data word

8: ...
CPU

Virtual address
(VA)

CPU Chip

44100

4190.308: Computer Architecture | Fall 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 5

▪ Use main memory as a “cache” for secondary (disk) storage

• Managed jointly by CPU hardware and the operating system

▪ Programs share main memory

• Each gets a private virtual address space holding its frequently used code and data

• Use virtual addresses for memory references

• Virtual address space is protected from other processes

• Lazy allocation: physical memory is dynamically allocated or released on demand

▪ CPU and OS translate virtual addresses to physical addresses

• VM “block” is called a page

• VM translation “miss” is called a page fault

4190.308: Computer Architecture | Fall 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 6

▪ Process’ abstract view of memory

• OS provides illusion of private address

space to each process

• Contains all of the memory state of

the process

• Static area: allocated on exec()

– Code & Data

• Dynamic area: allocated at runtime

– Can grow or shrink

– Heap & Stack
kernel virtual memory

(code, data, heap, stack)

run-time heap
(managed by malloc)

user stack
(created at runtime)

unused
0

memory
invisible to
user code

brk

read/write segment
(.data, .bss)

read-only segment
(.init, .text, .rodata)

N-1

stack
pointer

4190.308: Computer Architecture | Fall 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 7

▪ Fixed-size pages (e.g., 4KB)

4190.308: Computer Architecture | Fall 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 8

▪ On page fault, the page must be fetched from disk

• Takes millions of clock cycles

• Handled by OS code

▪ Try to minimize page fault rate

• Fully associative placement

• Smart replacement algorithms

4190.308: Computer Architecture | Fall 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 9

▪ Stores placement information

• Array of page table entries (PTEs), indexed by virtual page number

• Page table register in CPU points to page table in physical memory

▪ If page is present in memory

• PTE stores the physical page number

• Plus other status bits (referenced, dirty, …)

▪ If page is not present

• PTE can refer to location in swap space on disk

4190.308: Computer Architecture | Fall 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 10

Virtual page number (VPN) Virtual page offset (VPO)

Physical page number (PPN) Physical page offset (PPO)

Virtual address

Physical address

Valid Physical page number (PPN)

Page table
base register (PTBR)

(CR3 in x86)

Page table

Physical page table
address for the current
process

Valid bit = 0:
Page not in memory

(page fault)

0p-1pn-1

0p-1pm-1

Valid bit = 1

4190.308: Computer Architecture | Fall 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 11

4190.308: Computer Architecture | Fall 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 12

1) Processor sends virtual address to MMU

2-3) MMU fetches PTE from page table in memory

4) MMU sends physical address to cache/memory

5) Cache/memory sends data word to processor

MMU
Cache/
MemoryPA

Data

CPU
VA

CPU Chip
PTEA

PTE
1

2

3

4

5

4190.308: Computer Architecture | Fall 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 13

1) Processor sends virtual address to MMU

2-3) MMU fetches PTE from page table in memory

4) Valid bit is zero, so MMU triggers page fault exception

5) Handler identifies victim (and, if dirty, pages it out to disk)

6) Handler pages in new page and updates PTE in memory

7) Handler returns to original process, restarting faulting instruction

MMU Cache/
Memory

CPU
VA

CPU Chip
PTEA

PTE

1

2

3

4

5

Disk

Page fault handler

Victim page

New page

Exception

6

7

4190.308: Computer Architecture | Fall 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 14

Level 1

page table

...

Level 2

page tables

VP 0

...

VP 1023

VP 1024

...

VP 2047

Gap

0

PTE 0

...

PTE 1023

PTE 0

...

PTE 1023

1023 null
PTEs

PTE 1023 1023
unallocated

pages

VP 9215

Virtual

memory

(1K - 9)
null PTEs

PTE 0

PTE 1

PTE 2 (null)

PTE 3 (null)

PTE 4 (null)

PTE 5 (null)

PTE 6 (null)

PTE 7 (null)

PTE 8

2K allocated VM pages
for code and data

6K unallocated VM pages

1023 unallocated pages

1 allocated VM page
for the stack

32 bit addresses, 4KB pages, 4-byte PTEs

4190.308: Computer Architecture | Fall 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 15

CR3

Physical

address

of page

Physical

address

of L1 PT

9

VPO

9 12 Virtual

address

L4 PT

Page

table

L4 PTE

PPN PPO

40 12 Physical

address

Offset into

physical and

virtual page

VPN 3 VPN 4VPN 2VPN 1

L3 PT

Page middle

directory

L3 PTE

L2 PT

Page upper

directory

L2 PTE

L1 PT

Page global

directory

L1 PTE

99

40
/

40
/

40
/

40
/

40
/

12/

512 GB
region

per entry

1 GB
region

per entry

2 MB
region

per entry

4 KB
region

per entry

4190.308: Computer Architecture | Fall 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 16

▪ To reduce page fault rate, prefer least-recently used (LRU) replacement

• Reference bit (aka use bit) in PTE set to 1 on access to page

• Periodically cleared to 0 by OS

• A page with reference bit = 0 has not been used recently

▪ Disk writes take millions of cycles

• Block at once, not individual locations

• Use write-back: write-through is impractical

• Dirty it in PTE set when page is written

4190.308: Computer Architecture | Fall 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 17

▪ Address translation would appear to require extra memory references

• One to access the PTE

• Then the actual memory access

▪ But access to page tables has good locality

• So use a fast cache of PTEs within the CPU

• Called a Translation Look-aside Buffer (TLB)

• Typical: 16 – 512 PTEs, 0.5 – 1 cycle for hit, 10 – 100 cycles for miss,

0.01% – 1% miss rate

• Misses could be handled by hardware or software

4190.308: Computer Architecture | Fall 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 18

4190.308: Computer Architecture | Fall 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 19

▪ If page is in memory

• Load the PTE from memory and retry

• Could be handled in hardware: can get complex for more complicated page table

structures

• Or in software: raise a special exception with optimized handler (“TLB miss

handler”)

• Modern CPUs usually implement “page table walk” in hardware

▪ If page is not in memory (page fault)

• OS handles fetching the page and updating the page table

• Then restart the faulting instruction

4190.308: Computer Architecture | Fall 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 20

▪ A TLB hit eliminates a memory access

MMU
Cache/
Memory

CPU

CPU Chip

VA

1

PA

4

Data

5

TLB

2

VPN

PTE

3

4190.308: Computer Architecture | Fall 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 21

▪ A TLB miss incurs an additional memory access (the PTE)

• Fortunately, TLB misses are rare. Why?

MMU
Cache/
MemoryPA

Data

CPU
VA

CPU Chip

PTE

1

2

5

6

TLB

VPN

4

PTEA

3

4190.308: Computer Architecture | Fall 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 22

▪ Use faulting virtual address to find PTE

▪ Locate page on disk

▪ Choose page to replace

• If dirty, write to disk first

▪ Read page into memory and update page table

▪ Make process runnable again

• Restart from faulting instruction

4190.308: Computer Architecture | Fall 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 23

▪ Hardware support for OS protection

• Privileged supervisor mode (aka kernel mode)

• Privileged instructions

• Page tables and other state information only accessible in supervisor mode

• System call exception (e.g., ecall in RISC-V)

▪ Different tasks can share parts of their virtual address spaces

• But need to protect against errant access

• Requires OS assistance

4190.308: Computer Architecture | Fall 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 24

▪ Physically addressed cache

• Allows multiple processes to have blocks in cache

• Allows multiple processes to share pages

• Address translation is on the critical path

Memory

TLB

Page
tables

VA
PATLB hit

TLB miss

PTE
Data

Cache
PA

Data

Cache
hit

Cache
miss

page fault
protection fault

4190.308: Computer Architecture | Fall 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 25

L1 d-cache
32 KB, 8-way

L2 unified cache
256 KB, 8-way

L3 unified cache
8 MB, 16-way

(shared by all cores)

Main memory

Registers

L1 d-TLB
64 entries, 4-way

L1 i-TLB
128 entries, 4-way

L2 unified TLB
512 entries, 4-way

L1 i-cache
32 KB, 8-way

MMU
(addr translation)

Instruction
fetch

Core x4

DDR3 Memory controller
3 x 64 bit @ 10.66 GB/s

32 GB/s total (shared by all cores)

Processor package

QuickPath interconnect
4 links @ 25.6 GB/s each

To other
cores

To I/O
bridge

4190.308: Computer Architecture | Fall 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 26

CPU

VPN VPO

36 12

TLBT TLBI

432

...

L1 TLB (16 sets, 4 entries/set)

VPN1 VPN2

99

PTE

CR3

PPN PPO

40 12

Page tables

TLB

miss

TLB

hit

Physical

address

(PA)

Result

32/64

...

CT CO

40 6

CI

6

L2, L3, and

main memory

L1 d-cache

(64 sets, 8 lines/set)

L1

hit

L1

miss

Virtual address (VA)

VPN3 VPN4

99

PTE PTE PTE

4190.308: Computer Architecture | Fall 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 27

▪ If cache tag uses physical address

• Need to translate before cache lookup

▪ Alternative: use virtual address tag

• Complications due to aliasing:

Different virtual addresses for shared

physical address

4190.308: Computer Architecture | Fall 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 28

▪ Observation

• Bits that determine CI identical

in virtual and physical address

• Can index into cache while

address translation taking

place

• Generally we hit in TLB, so

PPN bits (CT bits) available

next

• Cache carefully sized to make

this possible

• “Virtually indexed, physically tagged”

Physical

address

(PA)

CT CO

40 6

CI

6

Virtual

address

(VA)
VPN VPO

36 12

PPOPPN

Address

Translation

No

Change

CI

L1 Cache

CT Tag Check

CT: Cache tag
CI: Cache index
CO: Byte offset within cache line

Memory Hierarchy Principles

4190.308: Computer Architecture | Fall 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 30

▪ Common principles apply at all levels of the memory hierarchy

• Based on notions of caching

▪ At each level in the hierarchy

• Block placement

• Finding a block

• Replacement on a miss

• Write policy

4190.308: Computer Architecture | Fall 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 31

▪ Determined by associativity

• Direct mapped (1-way associative) – one choice for placement

• n-way set associative – n choices within a set

• Fully associative – any location

▪ Higher associativity reduces miss rate

• Increases complexity, cost, and access time

4190.308: Computer Architecture | Fall 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 32

▪ Hardware caches

• Reduce comparisons to reduce cost

▪ Virtual memory

• Full table lookup makes full associativity feasible

• Benefit in reduced miss rate

Associativity Location method Tag comparisons

Direct mapped Index 1

n-way set associative Set index, then search
entries within the set

n

Fully associative Search all entries #entries

Full lookup table 0

4190.308: Computer Architecture | Fall 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 33

▪ Choice of entry to replace on a miss

• Least recently used (LRU)

– Complex and costly hardware for high associativity

• Random

– Close to LRU, easier to implement

▪ Virtual memory

• LRU approximation with hardware support

4190.308: Computer Architecture | Fall 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 34

▪ Write-through

• Update both upper and lower levels

• Simplifies replacement, but may require write buffer

▪ Write-back

• Update upper level only

• Update lower level when block is replaced

• Need to keep more state

▪ Virtual memory

• Only write-back is feasible, given disk write latency

4190.308: Computer Architecture | Fall 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 35

▪ Compulsory misses (or cold-start misses)

• First access to a block

▪ Capacity misses

• Due to finite cache size

• A replaced block is later accessed again

▪ Conflict misses (or collision misses)

• In a non-fully associative cache

• Due to competition for entries in a set

• Would not occur in a fully associative cache of the same total size

4190.308: Computer Architecture | Fall 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 36

▪ SPEC2000 benchmarks

• Compulsory misses: 0.006%

4190.308: Computer Architecture | Fall 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 37

Design change Effect on miss rate
Negative

performance effect

Increase cache size
Decrease capacity
misses

May increase access
time

Increase associativity
Decrease conflict
misses

May increase access
time

Increase block size
Decrease compulsory
misses

Increases miss
penalty. For very large
block size, may
increase miss rate due
to pollution.

4190.308: Computer Architecture | Fall 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 38

4190.308: Computer Architecture | Fall 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 39

4190.308: Computer Architecture | Fall 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 40

▪ Ignoring memory system effects when writing or generating code

• Example: iterating over rows vs. columns of arrays

• large strides result in poor locality

▪ In multi-core CPU with shared L2 or L3 cache

• Less associativity than cores results in conflict misses

• More cores  need to increase associativity

▪ Using AMAT to evaluate performance of out-of-order processors

• Ignores effect of non-blocked accesses

• Instead, evaluate performance by simulation

4190.308: Computer Architecture | Fall 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 41

▪ Fast memories are small, large memories are slow

• We really want fast, large memories 

• Caching gives this illusion ☺

▪ Principle of locality

• Programs use a small part of their memory space frequently

▪ Memory hierarchy

• L1 cache  L2 cache …  DRAM memory  disk

▪ Memory system design is critical for multiprocessors

