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▪ Example

#include <stdio.h>

int n = 0;

int main ()
{

n++;
printf (“&n = %p, n = %d\n”, &n, n);

}

% ./a.out
&n = 0x0804a024, n = 1
% ./a.out
&n = 0x0804a024, n = 1
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▪ Used in “simple” systems like embedded microcontrollers

• Cars, elevators, digital cameras, etc.
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▪ Used in all modern servers, laptops, and smartphones

▪ One of the great ideas in computer science
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▪ Use main memory as a “cache” for secondary (disk) storage

• Managed jointly by CPU hardware and the operating system

▪ Programs share main memory

• Each gets a private virtual address space holding its frequently used code and data

• Use virtual addresses for memory references

• Virtual address space is protected from other processes

• Lazy allocation:  physical memory is dynamically allocated or released on demand

▪ CPU and OS translate virtual addresses to physical addresses

• VM “block” is called a page

• VM translation “miss” is called a page fault
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▪ Process’ abstract view of memory

• OS provides illusion of private address 

space to each process

• Contains all of the memory state of 

the process

• Static area:  allocated on exec()

– Code & Data

• Dynamic area:  allocated at runtime

– Can grow or shrink

– Heap & Stack
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▪ Fixed-size pages (e.g., 4KB)
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▪ On page fault, the page must be fetched from disk

• Takes millions of clock cycles

• Handled by OS code

▪ Try to minimize page fault rate

• Fully associative placement

• Smart replacement algorithms
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▪ Stores placement information

• Array of page table entries (PTEs), indexed by virtual page number

• Page table register in CPU points to page table in physical memory

▪ If page is present in memory

• PTE stores the physical page number

• Plus other status bits (referenced, dirty, …)

▪ If page is not present

• PTE can refer to location in swap space on disk
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Virtual page number (VPN) Virtual page offset (VPO)
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(CR3 in x86)

Page table 

Physical page table 
address for the current
process

Valid bit = 0:
Page not in memory

(page fault)

0p-1pn-1

0p-1pm-1

Valid bit = 1



4190.308: Computer Architecture | Fall 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 11



4190.308: Computer Architecture | Fall 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 12

1) Processor sends virtual address to MMU

2-3) MMU fetches PTE from page table in memory

4) MMU sends physical address to cache/memory

5) Cache/memory sends data word to processor
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1) Processor sends virtual address to MMU

2-3) MMU fetches PTE from page table in memory

4) Valid bit is zero, so MMU triggers page fault exception

5) Handler identifies victim (and, if dirty, pages it out to disk)

6) Handler pages in new page and updates PTE in memory

7) Handler returns to original process, restarting faulting instruction
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▪ To reduce page fault rate, prefer least-recently used (LRU) replacement

• Reference bit (aka use bit) in PTE set to 1 on access to page

• Periodically cleared to 0 by OS

• A page with reference bit = 0 has not been used recently

▪ Disk writes take millions of cycles

• Block at once, not individual locations

• Use write-back:  write-through is impractical

• Dirty it in PTE set when page is written



4190.308: Computer Architecture | Fall 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 17

▪ Address translation would appear to require extra memory references

• One to access the PTE

• Then the actual memory access

▪ But access to page tables has good locality

• So use a fast cache of PTEs within the CPU

• Called a Translation Look-aside Buffer (TLB)

• Typical:  16 – 512 PTEs, 0.5 – 1 cycle for hit, 10 – 100 cycles for miss, 

0.01% – 1% miss rate

• Misses could be handled by hardware or software
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▪ If page is in memory

• Load the PTE from memory and retry

• Could be handled in hardware: can get complex for more complicated page table 

structures

• Or in software:  raise a special exception with optimized handler (“TLB miss 

handler”)

• Modern CPUs usually implement “page table walk” in hardware

▪ If page is not in memory (page fault)

• OS handles fetching the page and updating the page table

• Then restart the faulting instruction
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▪ A TLB hit eliminates a memory access
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▪ A TLB miss incurs an additional memory access (the PTE)

• Fortunately, TLB misses are rare. Why?
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▪ Use faulting virtual address to find PTE

▪ Locate page on disk

▪ Choose page to replace

• If dirty, write to disk first

▪ Read page into memory and update page table

▪ Make process runnable again

• Restart from faulting instruction
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▪ Hardware support for OS protection

• Privileged supervisor mode (aka kernel mode)

• Privileged instructions

• Page tables and other state information only accessible in supervisor mode

• System call exception (e.g., ecall in RISC-V)

▪ Different tasks can share parts of their virtual address spaces

• But need to protect against errant access

• Requires OS assistance
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▪ Physically addressed cache

• Allows multiple processes to have blocks in cache

• Allows multiple processes to share pages

• Address translation is on the critical path
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L1 d-cache
32 KB, 8-way

L2 unified cache
256 KB, 8-way

L3 unified cache
8 MB, 16-way 

(shared by all cores)

Main memory
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64 entries, 4-way
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128 entries, 4-way

L2  unified TLB
512 entries, 4-way
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32 KB, 8-way

MMU 
(addr translation)

Instruction
fetch

Core x4

DDR3 Memory controller
3 x 64 bit @ 10.66 GB/s

32 GB/s total (shared by all cores)

Processor package

QuickPath interconnect
4 links @ 25.6 GB/s each

To other 
cores

To I/O
bridge
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▪ If cache tag uses physical address

• Need to translate before cache lookup

▪ Alternative: use virtual address tag

• Complications due to aliasing:

Different virtual addresses for shared 

physical address
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▪ Observation

• Bits that determine CI identical

in virtual and physical address

• Can index into cache while

address translation taking 

place

• Generally we hit in TLB, so

PPN bits (CT bits) available

next

• Cache carefully sized to make

this possible

• “Virtually indexed, physically tagged”
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Memory Hierarchy Principles
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▪ Common principles apply at all levels of the memory hierarchy

• Based on notions of caching

▪ At each level in the hierarchy

• Block placement

• Finding a block

• Replacement on a miss

• Write policy
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▪ Determined by associativity

• Direct mapped (1-way associative) – one choice for placement

• n-way set associative – n choices within a set

• Fully associative – any location

▪ Higher associativity reduces miss rate

• Increases complexity, cost, and access time
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▪ Hardware caches

• Reduce comparisons to reduce cost

▪ Virtual memory

• Full table lookup makes full associativity feasible

• Benefit in reduced miss rate

Associativity Location method Tag comparisons

Direct mapped Index 1

n-way set associative Set index, then search 
entries within the set

n

Fully associative Search all entries #entries

Full lookup table 0
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▪ Choice of entry to replace on a miss

• Least recently used (LRU)

– Complex and costly hardware for high associativity

• Random

– Close to LRU, easier to implement

▪ Virtual memory

• LRU approximation with hardware support



4190.308: Computer Architecture | Fall 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 34

▪ Write-through

• Update both upper and lower levels

• Simplifies replacement, but may require write buffer

▪ Write-back

• Update upper level only

• Update lower level when block is replaced

• Need to keep more state

▪ Virtual memory

• Only write-back is feasible, given disk write latency
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▪ Compulsory misses (or cold-start misses)

• First access to a block

▪ Capacity misses

• Due to finite cache size

• A replaced block is later accessed again

▪ Conflict misses (or collision misses)

• In a non-fully associative cache

• Due to competition for entries in a set

• Would not occur in a fully associative cache of the same total size
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▪ SPEC2000 benchmarks

• Compulsory misses:  0.006%
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Design change Effect on miss rate
Negative 

performance effect

Increase cache size
Decrease capacity 
misses

May increase access 
time

Increase associativity
Decrease conflict 
misses

May increase access 
time

Increase block size
Decrease compulsory 
misses

Increases miss 
penalty. For very large 
block size, may 
increase miss rate due 
to pollution.
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▪ Ignoring memory system effects when writing or generating code

• Example: iterating over rows vs. columns of arrays

• large strides result in poor locality

▪ In multi-core CPU with shared L2 or L3 cache

• Less associativity than cores results in conflict misses

• More cores  need to increase associativity

▪ Using AMAT to evaluate performance of out-of-order processors

• Ignores effect of non-blocked accesses

• Instead, evaluate performance by simulation
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▪ Fast memories are small, large memories are slow

• We really want fast, large memories 

• Caching gives this illusion ☺

▪ Principle of locality

• Programs use a small part of their memory space frequently

▪ Memory hierarchy

• L1 cache  L2 cache …  DRAM memory  disk

▪ Memory system design is critical for multiprocessors


