Jin-Soo Kim
(jinsoo.kim@snu.ac.kr)

Systems Software &
Architecture Lab.

Seoul National University

Fall 2019

Cache Optimization

Chap. 5.4

Cache Performance

= Components of CPU time
* Program execution cycles include cache hit time

* Memory stall cycles: mainly from cache misses
" With simplifying assumptions:
Memory stall cycles

Memory accesses

= X Miss rate X Miss penalt
Program P Y

Instructions Misses

= X X Miss penalt
Program Instruction P Y

Cache Performance: Example

= Given
* |-cache miss rate = 2%
* D-cache miss rate = 4%
* Miss penalty = 100 cycles
* Base CPI (ideal cache) =2
* Load & stores are 36% of instructions

= Miss cycles per instruction
* l-cache: 0.02 x 100 =2
* D-cache: 0.36 x 0.04 x 100 = 1.44

= Actual CPl =2+2+ 144 =544
e |deal CPU is 5.44/2 = 2.72 times faster

4190.308: Computer Architecture | Fall 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

Average Access Time

* Hit time is also important for performance

" Average memory access time (AMAT):

AMAT = Hit time + Miss rate X Miss penalty

= Example
e CPU with Ins clock

Hit time = | cycle,

Miss penalty = 20 cycles

l-cache miss rate = 5%

AMAT = | + 0.05 x 20 = 2ns (2 cycles per instruction)

Cache Performance Summary

* When CPU performance increased

* Miss penalty becomes more significant

* Decreasing base CPI

* Greater proportion of time spent on memory stalls

" |ncreasing clock rate

* Memory stalls account for more CPU cycles

= Can’t neglect cache behavior when evaluating system performance

Associative Caches

= Fully associative
* Allows a given block to go in any cache entry
* Requires all entries to be searched at once

* Comparator per entry (expensive)

" n-way set associative

 Each set contains n entries
 Block number determines which set: Block number modulo #Sets _in cache

* Search all entries in a given set at once

* n comparators (less expensive)

4190.308: Computer Architecture | Fall 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

Associative Cache Example

Direct mapped Set associative Fully associative
Block# 01234567 Set# 0 1 2 3
Data Data Data
1 1 1
T Ta Ta
ag 2 I 12 J 2

e B sewn TTTTTTT]

Spectrum of Associativity

» For a cache with 8 entries

One-way set associative

(direct mapped) Two-way set associative Four-way set associative
Block Tag Data Set Tag Data Tag Data Set Tag Data Tag Data Tag Data Tag Data
0 0 0

1 1 1

2 2

3 3

4

5

6 Eight-way set associative (fully associative)

7 Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data

Associativity Example (1)

* Compare 4-block caches
* Direct mapped, 2-way set associative, fully associative

* Block access sequence: 0,8,0,6,8

* Direct mapped

Block . ' . Cache content after access
Cache index Hit / Miss
address 1 2
0 0%4=0 Miss Mem|[0]
8 8%4=0 Miss Mem|[8]
0 0%4=0 Miss Mem][0]
6 6%4=2 Miss Mem][0] Mem|[6]
8 8%4=0 Miss Mem[8]

4190.308: Computer Architecture | Fall 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

Associativity Example (2)

= 2-way set associative

azlc:)rcelzs ‘ Cache index ‘ Hit / Miss soro Cache content after access il
0 0%2=0 Miss Mem|[0]
8 0%2=0 Miss Mem][0] Mem[8]
0 0%2=0 Hit Mem][0] Mem|[8]
6 6%2=0 Miss Mem][0] Mem[6]
8 8%2=0 Miss Mem|[8] Mem[6]

" Fully associative
Block

address ‘ Cache index ‘ Hit / Miss ‘ Cache content after access
0 - Miss Mem][0]
8 - Miss Mem][0] Mem[8]
0 - Hit Mem[0] Mem[8]
6 - Miss Mem][0] Mem|[8] Mem|[6]
8 - Hit Mem][0] Mem|[8] Mem[6]

4190.308: Computer Architecture | Fall 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

How Much Associativity!?

" |ncreased associativity decreases miss rate

* But with diminishing returns

. . 12 10.3

= Simulation of a system L
e 64KB D-cache

+ 16-word blocks ’
 SPEC2000 6
4
2
0

1-way

4190.308: Computer Architecture | Fall 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

Miss rate

8.6

2-way

8.3

3-way

8.1

4-way

11

Set Associativity Cache Organization

Address
3130---12111098---3210

J22 48
Tag
Index

Index V Tag Data V Tag Data V Tag Data V Tag Data
0
1
2

[] L] [] p L [9 p []
253
254
255

22 32
(= (= (= (=

?

Hit

§4-to-1 multiplex@
|

Data

12

General Cache Organization (§, E, B)

S$=2 sets<

E = 2¢ lines per set

A

~N
— Set

——— line or block

\'}

tag

B-1

1

valid bit

7

Cache size:
C=Sx E x Bdata bytes

B = 2® bytes per cache block (the data)

13

Cache Read

* [ocate set

- el
E = 2¢lines per set * Check if any line in set has matching tag

AL
- N * Yes + line valid: hit
4) _
ceoe Locate data starting at offset
Address of word:
o000

t bits s bits | b bits

S=Zssets< Y Y M

eoee tag set block
index offset

o000 <

data begins at this offset

Vv tag 0]1]2] ec°- B-1

valid bit 4 ~ —
B = 2 bytes per cache block (the data)

Replacement Policy

" Direct mapped: no choice

" Set associative
* Prefer non-valid entry, if there is one

* Otherwise, choose among entries in the set

" | east-recently used (LRU)
* Choose the one unused for the longest time
* Simple for 2-way, manageable for 4-way, too hard beyond that

* Random
* Gives approximately the same performance as LRU for high associativity

4190.308: Computer Architecture | Fall 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

15

Multilevel Caches

* Primary cache attached to CPU (Level-| or L1I)
* Small, but fast

" |evel-2 (L2) cache services misses from primary cache

* Larger, slower, but still faster than main memory

* Main memory services L2 cache misses

* Some high-end systems include L3 cache

Multilevel Cache Example

= Given
e CPU base CPI = I, clock rate = 4GHz
e Miss rate / instruction = 2%

* Main memory access time = |100ns
" With just primary cache

* Miss penalty = 100ns / 0.25ns = 400 cycles
* Effective CPI =1 + 0.02 x 400 =9

4190.308: Computer Architecture | Fall 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

17

Multilevel Cache Example (cont’d)

= Now add L2 cache

* Access time = 5ns
* Global miss rate to main memory = 0.5%

" Primary miss with L2 hit
* Penalty = 5ns / 0.25ns = 20 cycles

* Primary miss with L2 miss
* Extra penalty = 400 cycles

= CPI=1+0.02x20+0.005x400=34

= Performance ratio=9/34 =26

Multilevel Cache Considerations

* Primary cache

e Focus on minimal hit time

= |2 cache

* Focus on low miss rate to avoid main memory access
* Hit time has less overall impact

= Results
* LI cache usually smaller than a single-level cache
* LI block size smaller than L2 block size
* L2 cache is much larger than in a single-level cache

* L2 cache uses higher associativity for reducing miss rates

4190.308: Computer Architecture | Fall 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

19

Intel Core i7 Cache Hierarchy

Processor package

8 MB, 16-way,
Access: 40-75 cycles

L3 unified cache
(shared by all cores)

Block size:
--- 64 bytes for all caches

. Core0 Core 3 | L1 i-cache and d-cache:
| | 32 KB, 8-way,

I R 1

Regs °e° Access: 4 cycles

| L1 L1 L1 L1 i L2 unified cache:

. | |d-cache| |i-cache d-cache| |i-cache| | . 256 KB, 8-way,

i "ot Access: 10 cycles

L2 unified cache L2 unified cache .

| 5 L3 unified cache:

Main memory

Interactions with Advanced CPUs

" Qut-of-order CPUs can execute instructions during cache miss
* Pending store stays in load/store unit

* Dependent instructions wait in reservation stations

— Independent instructions continue

* Effect of miss depends on program data flow
* Much harder to analyze

* Use system simulation

4190.308: Computer Architecture | Fall 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

21

Interactions with Software

1200

1000

= Misses depend on
memory access patterns

* Algorithm behavior :

800 -

600 -

Instructions/item

400 -

4 8 16 32 64 128 256 512 1024 2048 4096
Size (K items to sort)

* Compiler optimization for
memory access

* Standard algorithmic analysis

4 8 16 32 64 128 256 512 1024 2048 4096
b. Size (K items to sort)

often ignores the impact of
the memory hierarchy

4 8 16 32 64 128 256 512 1024 2048 4096
Size (K items to sort)

22

Writing Cache Friendly Code

* Make the common case go fast

* Focus on the inner loops of the core functions

* Minimize the misses in the inner loops

* Repeated references to variables are good (temporal locality)
 Stride-| reference patterns are good (spatial locality)

» Key idea: Our qualitative notion of locality is quantified through our
understanding of cache memories

23

Matrix Multiplication

= Description
* Multiply N x N matrices
* O(N?3) total operations

()
(i) X -

A B C

= Assumptions

(1)

/* ijk */
for (i=0; i<n; i++) {
for (j=0; j<n; j++) {
sum = 0.9; <
for (k=0; k<n; k++)

Variable sum
held in register

/

sum += a[i][k] * b[k]1[F1;
c[i][3] = sum;
}
}

* Line size = 32 bytes (big enough for 4 64-bit words)

* Matrix dimension (N) is very large

24

Matrix Multiplication (2)

= Matrix multiplication (ijk)

/* ijk */
for (i=0; i<n; i++) {
for (j=0; j<n; j++) { (*.J)

Inner loop:

sum = 0.0; I; |:I: Q’j)

(1,%)
for (k=0; k<n; k++)

sum += a[i][k] * b[k1[]]1; A B C
c[i][j] = sum; ‘ ‘ ‘
}
} Row-wise Column- Fixed
wise

Misses per Inner Loop Iteration:

A B
0.25 1.0 0.0

(@)

Matrix Multiplication (3)

= Matrix multiplication (jik)

/* jik */ Inner loop:
for (j=0; j<n; j++) { _
for (i=0; i<n; i++) { () -
sum = 0.0; (i,%) Q’J)

for (k=0; k<n; k++)
sum += a[i][k] * b[K]I[3]; A B c

c[i]1[§] = sum ‘ ‘ ‘
}

Row-wise Column- Fixed
wise

}

Misses per Inner Loop Iteration:
A B
0.25 1.0 0.0

(@)

Matrix Multiplication (4)

= Matrix multiplication (kij)

/* kij */

Inner loop:
for (k=0; k<n; k++) {

for (j=0; j<n; j++) A
c[1][J] += r * b[k]I[3]; ‘ ‘
Fixed Row-wise

A

0.0 0.25 0.25

for (i=0; i<n; i++) { (i,K) (k,*)
r = a[i][k]; O E g(i,*)
B C

Row-wise

27

Matrix Multiplication (5)

= Matrix multiplication (ikj)

/* ikj */ Inner loop:

r = a[i][k];
for (j=0; j<n; j++)
c[i1[j] += r * b[kI[]]1; ‘ ‘

A

Fixed Row-wise

Misses per Inner Loop Iteration:

A

0.0 0.25 0.25

for (i=@; i<n; i++) { :
for (k=0; k<n; k++) { ('.’k) E(k’*)g(i 9
B C

Row-wise

28

Matrix Multiplication (6)

= Matrix multiplication (jki)

/¥ jki */ Inner loop:
for (j=0; j<n; j++) { (*.K) *J)
r = b[k][]j]; O
for (i=0; i<n; i++) A B C
c[i][j] += a[il[k] * r; ‘ | |
Column- Fixed Column-
wise wise

Misses per Inner Loop Iteration:

A B

1.0 0.0 1.0

(@)

29

Matrix Multiplication (7)

= Matrix multiplication (kji)

/* kji */

r = b[k][]];

Misses per Inner Loop Iteration:

for (k=0; k<n; k++) {
for (j=0; j<n; j++) {

for (i=0; i<n; i++)

A

1.0

B
0.0

c[1][3] += a[i][k] * r;

(@)

1.0

Inner loop:

(*,K)

A

|

Column-
wise

(k.))
[

B

|

Fixed

(*.J)

C

|

Column-
wise

30

Matrix Multiplication (8)

Summary

ijk (& jik):
¢ 2 loads, O stores
* misses/iter = 1.25

for (i=0; i<n; i++) {
for (j=0; j<n; j++) {
sum = 0.0;
for (k=0; k<n; k++)
sum += a[i][k] * b[k][]j];

c[i][]] = sum;

kij (& ikj):
e 2 |loads, 1 store
e misses/iter = 0.5

for (k=0; k<n; k++) {
for (i=0; i<n; i++) {
r = a[i][k];
for (j=0; j<n; j++)
c[i][j] += r * b[K][]];
}
}

jki (& Kiji):
e 2 loads, 1 store
e misses/iter = 2.0

A B C

0.0 0.25 0.25

for (j=0; j<n; j++) {
for (k=0; k<n; k++) {
r = b[k][]];
for (i=@; i<n; i++)
c[i][j] += a[i][k] * r;
}
}

Core i/ Matrix Multiplication Performance

" Performance in Core i/

100 -
S
©
3
é‘ >-jki
2 0 =-kji
e ; >ijk
;E: -o-jik
& —+—kij
;; —A—ij
(@)
. kij / ikj

50 100 150 200 250 300 350 400 450 500 550 600 650 700
Array size (n)

4190.308: Computer Architecture | Fall 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

Summary

= Cache memories can have significant performance impact

should
" You-ean-write your programs to exploit this!

* Focus on the inner loops, where bulk of computations and memory accesses occur
* Try to maximize spatial locality by reading data objects with sequentially with stride |
* Try to maximize temporal locality by using a data object as often as possible once it’s

read from memory

33

