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Pipeline Registers

" Need registers between stages

* To hold information produced in previous cycle
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Pipeline Operation

" Cycle-by-cycle flow of instructions through the pipelined datapath

= “Single-clock-cycle” pipeline diagram
* Shows pipeline usage in a single cycle
* Highlight resource used
* (cf.) “multi-clock-cycle” diagram: graph of operation over time

= WEe’ll look at “single-clock-cycle” diagrams for load & store
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MEM for Load
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Corrected Datapath for Load
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EX for Store

Read
data

MEM/WB

Y

| ” |
| Execution I
IF/ID ID/EX EX/MEM
Add > > >
4 — AddSum
Shift
left 1
-0

M
u PC Address c . |Read Read

o Ll .

B=] ter 1 > >
1x 5 register data 1

= Read Zero - =

Instruction _ < register 2 ALU 71y
o Regist - > ——| Address
memory Write egis ersRea g > (:“ result
register data 2 - Data
> Write X memory
data 1
_ Write
- data
3% [ imm 64 |
v\ Gen

14



MEM for Store

4 —

IF/ID

PC

Address

Instruction
memory

ID/EX

\

Instruction

Shift
left 1

YAdd Sum|

»_| Read Read
" | register 1 e >
e data 1 g
Read
register 2
Registers Read
Wiite data 2 -
register
Write
data
32 Imm 64
\\ > Gen

Zero

PALU
result

| < |

| Memory |
EX/MEM MEM/WB
-
. Read
> @ Address data [ ™

Data
memory

- | wiite
- " | data

Y

15



VVB for Store
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Multi-Cycle Pipeline Diagram

* Form showing resource usage
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Multi-Cycle Pipeline Diagram

= Traditional form
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execution
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Single-Cycle Pipeline

" State of pipeline in a given cycle

| Id x13, 48(x1)
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Pipelined Control (Simpl
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Generating Control Signals

Execution/address

calculation stage Memory access stage Write-back stage
control lines control lines control lines

Mem- Reg- Memto-
I PP P P I o S el
R-format 0 0 0 0
d 00 1 0 1 0 1 1
sd 00 1 0 0 1 0 X
beq 01 0 1 0 0 0 X
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Pipelined Control

" Control signals derived from instruction

* As in single-cycle implementation

| wB
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Pipeline
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Data Hazards

Chap. 4.7




Data Hazards in ALU Instructions

* Consider this sequence:

sub x2, x1, x3

and x12, x2, x5
or x13, X6, X2
add x14, x2, x2
sd x15, 100(x2)

" We can resolve hazards with forwarding

e How do we detect when to forward?



Dependencies and Forwarding

Time (in clock cycles) >~
Value of CC1 CC2 CC3 CC4 CC5 CcC6 CC7 CC38 CcCC9
register x2: 10 10 10 10 10/-20 =20 =20 =20 -20
Program
execution
order
(in instructions) = -
|~ 1
sub x2, x1, x3 IM LReg DM Rng
dx12, X2, X5 M R DM Reg
and x12, x2, x L_eg I_j _e_gj

or x13, x6, x2

e

add x14, x2, x2

DM Reg!

—
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Detecting the Need to Forward

* Pass register numbers along pipeline
* eg,ID/EX.RegisterRsl = register # for Rs1 sitting in ID/EX pipeline register

* ALU operand register numbers in EX stage are given by
« ID/EX.RegisterRsl, ID/EX.RegisterRs2

= Data hazards when

EX/MEM.RegisterRd = ID/EX.RegisterRsl Forward from

. ) > EX/MEM pipeline
EX/MEM.RegisterRd = ID/EX.RegisterRs2 J register
MEM/WB.RegisterRd = ID/EX.RegisterRsl Forward from

. ) > MEM/WB pipeline
MEM/WB.RegisterRd = ID/EX.RegisterRs2 ) register
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Detecting the Need to Forward (contd)

* But only if forwarding instruction will write to a register!

EX/MEM.ReghWrite, MEM/WB.RegWrite

* And only if Rd for that instruction is not x0

EX/MEM.RegisterRd # 0O,
MEM/WB.RegisterRd # ©




Forwarding Paths
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Forwarding Conditions

= EX hazard

if (EX/MEM.RegWrite and (EX/MEM.RegisterRd # 0)
and (EX/MEM.RegisterRd = ID/EX.RegisterRsl))
forwardA = 10

if (EX/MEM.RegWrite and (EX/MEM.RegisterRd # 0)
and (EX/MEM.RegisterRd = ID/EX.RegisterRs2))
forwardB = 10

= MEM hazard

if (MEM/WB.RegWrite and (MEM/WB.RegisterRd # 0)
and (MEM/WB.RegisterRd = ID/EX.RegisterRsl))
forwardA = 01

if (MEM/WB.RegWrite and (MEM/WB.RegisterRd # 0)
and (MEM/WB.RegisterRd = ID/EX.RegisterRs2))
forwardB = 01




Forwarding Control

MUX control Source Example

ForwardA = 00 ID/EX The first ALU operand comes from the register file.

ForwardA = 10 EX/MEM The first ALU operand is forwarded from the prior ALU
result.

ForwardA = 91 MEM,/WB The flrs:t ALU operand is forwarded from data memory or
an earlier ALU result.

ForwardB = 00 ID/EX The second ALU operand comes from the register file.

ForwardB = 10 EX/MEM The second ALU operand is forwarded from the prior ALU
result.

Forwards = 01 MEM/WB The secon-d ALU operand is forwarded from data memory
or an earlier ALU result.
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Double Data Hazard

* Consider this sequence:

add x1, x1, x2
add x1, x1, x3
add x1, x1, x4

= Both hazards occur

* Want to use the most recent

= Revise MEM hazard condition

* Only forward if EX hazard condition isn’t true
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Revised Forwarding Conditions

= MEM hazard

if (MEM/WB.RegWrite
and (MEM/WB.RegisterRd # 0)
and not (EX/MEM.RegWrite and (EX/MEM.RegisterRd # 0)

and (EX/MEM.RegisterRd = ID/EX.RegisterRsl))
and (MEM/WB.RegisterRd = ID/EX.RegisterRsl))
forwardA = 01

if (MEM/WB.RegWrite
and (MEM/WB.RegisterRd != 0)
and not (EX/MEM.RegWrite and (EX/MEM.RegisterRd # 0)
and (EX/MEM.RegisterRd = ID/EX.RegisterRs2))
and (MEM/WB.RegisterRd = ID/EX.RegisterRs2))

forward = 01
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Datapath with Forwarding
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Complete Datapath with Forwarding
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Load-Use Hazard

Time (in clock cycles)
CC1 CC2 CC3 CC4 CC5 CCé6 CC7 cCs8 CC9

Program
execution
order

(in instructions)

Can’t go
backward here

Id x2, 20(x1) IM

and x4, x2, x5

or x8, x2, X6

add x9, x4, x2

1
LS

r— — -1
sub x1, x6, x7 IM — —'::Reg| > DM Reg!




Load-Use Hazard Detection

* Check when using instruction is decoded in ID stage

* ALU operand register numbers in ID stage are given by
« TF/ID.RegisterRsl, IF/ID.RegisterRs2

" | oad-use hazard when

ID/EX.MemRead and
((ID/EX.RegisterRd
(ID/EX.RegisterRrd

IF/ID.RegisterRsl) or
IF/ID.RegisterRs2))

= |f detected, stall and insert bubble
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How to Stall the Pipeline

* Force control values in ID/EX register to 0O
* EX, MEM and WB do nop (no-operation)

" Prevent update of PC and IF/ID register
* Using instruction is decoded again
* Following instruction is fetched again

* |-cycle stall allows MEM to read data for 1d
—> Can subsequently forward to EX stage
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Pipeline Register Modes

State = x
Input =y Output = x
Normal DX —>
_ SR
stall =0 bubble =0
State = x
Input =y Output = x
Stall DIX >
_ SR
stall =1 bubble =0
State = x
Input = Output = x
Bubble P ="
_ S
stall =0 bubble = 1

2

2

Rising
clock

Rising
clock

Rising
clock

State=vy

Output =
5 P y

State = x

Output = x
>

State = nop

Output = nop

p—>
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Load-Use Data Hazard

Time (in clock cycles)
CC2

Program
execution
order

(in instructions)

Id x2, 20(x1)
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and x4, x2, x5
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. add x9, x4, x2
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g
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here
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Datapath with Hazard Detection
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Stalls and Performance

= Stalls reduce performance

* But are required to get correct results

* Compiler can arrange code to avoid hazards and stalls

* Requires knowledge of the pipeline structure
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Control Hazards
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Control Hazards

* |f branch outcome determined in MEM (with always-not-taken prediction)

Time (in clock cycles)

CC1 CC2 CC3 CC4 CC5b CC6 CC7 CcCs8 CC9

Program
execution
order

(in instructions)

40 beq x1, x0, 16 |Ill—|—D

44 and x12, X2, x5

Flush these
> | instructions
(Set control
values to 0)

48 or x13, x6, x2

52 add x14, x2, x2

—

72 1d x4, 100(x7)
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Reducing Branch Delay

" Move hardware to determine outcome to ID stage

* Target address adder

* Register comparator

= Example: branch taken

36:
40:
44
48:
52:
56:

72:

sub
beq
and
or

add
sub

1d

x10, x4, X8
x1l, x3, 16
x12, x2, X5
x13, X2, X6
x14, x4, x2
x15, x6, X7

x4, 50(x7)

// PC-relative branch to 40+16*2 = 72
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Example: Branch Taken

before<2>

and x12, x2, x5 i beq x1, x3, 16 i sub x10, x4, x8 3 before<1> E
IF.Flush | : ! :
| /" Hazard \ : ! |
detection ] | ! |
unit / ! | !
IDJEX ! |
e EX/MEM I
M —‘—I 1
L »-(Control 5 u M WB MEM/WB
f’ X s
72 EX » M WB
4
8 a :
Regi
Y gLl
X3 u
XBL Data X
16] memory
g 10 "
L
| Forwarding |
: unit Vs : +

Clock 3
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Example: Branch Taken (cont'd)

Id x4, 50(x7) | Bubble (nop) | beq x1, x3, 16 | subx10,... . before<1>
IF.Flush ! ! ! !
: Hazard | | |
detection | T ' I
unit ) | | |
ID/EX
M we EX/MEM !
¢ Control u M ~lws] MEI\A/\NB
x 1
| ) 0 EX wB !
- L
Shift
left 1
Registers
[ | . =M
u
76 X Data X
memory
(o -
Gen
: : . :
Clock 4 | I I
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Another Cost of Branch Test in ID

* Register operands may require forwarding

* New forwarding logic from EX/MEM or MEM/WB pipeline registers to |ID needed

= Stalls due to data hazard

* |-cycle stall if the preceding
instruction is an ALU instruction

* 2-cycle stall if the preceding
instruction is the load instruction

add x3,x4,x5
beq x8,x3,10

1d x3,0(x4)
beq x8,x3,10

IF

ID

WB

IF

EX

MEM

WB

IF

ID

WB

IF

EX

MEM

WB
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Dynamic Branch Prediction

" |n deeper and superscalar pipelines, branch penalty is more significant

= Use dynamic prediction
* Branch prediction buffer (or branch history table)
* Indexed by recent branch instruction addresses

* Stores outcome (taken / not taken)

* To execute a branch
* Check table, expect the same outcome
* Start fetching from fall-through or target
* If wrong, flush pipeline and flip prediction
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| -Bit Predictor: Shortcoming

" |nner loop branches mispredicted twice!

&
<«

outer:

A

inner:

beq .., .., inner | —

beq .., .., outer

* Mispredict as taken on last iteration of inner loop

* Then mispredict as not taken on first iteration of inner loop next time around
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2-bit Predictor

* Only change prediction on two successive

Not taken

\

mispredictions

Taken

Not taken

Nottakenl ‘ Taken

Predict not taken

Taken

N
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Calculating Branch Target

= Even with predictor; still need to calculate the target address

* |-cycle penalty for a taken branch

" Branch target buffer (BTB)

* Cache of target addresses
* Indexed by PC when instruction fetched
* If hit and instruction is branch predicted taken, can fetch target immediately
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Exceptions
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Exceptions and Interrupts

* “Unexpected” events requiring change in flow of control
* Different ISAs use the terms differently

" Exception
* RISC-V:any unexpected change in control flow (either internal or external)
* Internal exception arises within the CPU (e.g., undefined opcode, syscall, ...)

" |nterrupt
e RISC-V:event from an external I/O controller

* e.g., hard disks, network adapters, keyboard, ...

* Dealing with them without sacrificing performance is hard
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Handling Exceptions in RISC-V

= Save PC of offending (or interrupted) instruction

* Supervisor Exception Program Counter (SEPC)

= Save indication of the problem
* Supervisor Exception Cause Register (SCAUSE)
* 64-bits, but most bits unused

* Exception code field: 2 for undefined opcode, |2 for hardware malfunction, ...

" Jump to handler
* Assume at Ox0000 0000 1CO9 0000
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An Alternate Mechanism

" Vectored interrupts

* Handler address determined by the cause

* Exception vector address to be added to a vector table base register:
* Undefined opcode: 00 0100 0000
* Hardware malfunction: Ol 1000 0000

" |nstructions either
* Deal with the interrupt, or

* Jump to real handler
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Handler Actions

= Read cause, and transfer to relevant handler
* Determine action required

= |f restartable
 Take corrective action
* Use SEPC to return to program

= Otherwise

* Terminate program
* Report error using SEPC, SCAUSE, ...
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Exceptions in a Pipeline

= Another form of control hazard

= Consider malfunction on add in EX stage

add x1, x2, x1

Prevent x| from being clobbered

Complete previous instructions

Flush add and subsequent instructions
Set SEPC and SCAUSE register values
* Transfer control to handler

= Similar to mispredicted branch: use much of the same hardware
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Pipeline with Exceptions

1C080000

EX.Flush

| MEM/WB
WB

IF.Flush
ID.Flush
f Hazard ]

detection |- Y

unit / ¥y (W

M

1 ID/EX u

| x

Y
e 0> ( EXIMEM
Control e M ':' = \WB
—>— | SCAUSE X 4
IFVID 0 EX |—> SEpc | O0— M
Shift M)
4 left 1 N L.
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Registers AN
N Y - "_ ALU
nl:l pc L] Instruction || > :/_\
x memory - M Data |
— — r— : memory
Imm N >
* Gen >
o »-—p

xec=s

59



Exception Properties

= Restartable exceptions

* Pipeline can flush the instruction

 Handler executes, then returns to the instruction:

Refetched and executed from scratch

= PC saved in SEPC register

* ldentifies causing instruction
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Exception Example (1)

= Exception on add in

40: sub x11l, x2, x4

44 and x12, x2, X5

48 or x13, X2, X6

4c: add x1l, x2, x1

50: sub x15, x6, X7

54 : 1d x16, 100(x7)

= Handler

1c090000 sd X26, 1000(x10)
1c090004 sd x27, 1008(x10)
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Exception Example (2)

Id x16, 100(x7)

IF.Flush

sub x15, x6, x7

A

X / Hazard
ikdetection I

unit

1C0S0000 =
10

b

| add x1, x2, x1 ' orx13,... jandx12,...
EX_Flush
ID.Flush 1 : :
4 , e e
1 M : :
v ID/EX u : :
X : '
M == 10 \
u WB MEM/WB
X AL

Clock 6
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Exception Example (3)

sd x26, 1000(x0) , bubble (nop) | bubble . bubble ,orx13, ...
! : EXFlush | !
IF_Flush : I : :
! ID.Flush ! : |
! Hazard : ! !
detection | : ! !
\ unit / ¥ : w 1 1
IDIEX a2 |
0 5 0 X 1 1
M - o ﬁ\fl EXIMEM :
Control u 000 " E 00 MENI"WB
|X SCAUSE u !
0 sepc | 0—\ % M _“'
('\
M
—= U -
-
1 L YALU
1C090000 ﬁ
Data
s memory
M| X
13
Clock 7
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Multiple Exceptions

* Pipelining overlaps multiple instructions

* Could have multiple exceptions at once

= Simple approach: deal with exception from earliest instruction
* Flush subsequent instructions

* “Precise” exceptions

" |n complex pipelines
* Multiple instructions issued per cycle
* Out-of-order completion

* Maintaining precise exceptions is difficult!
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Imprecise Exceptions

" Just stop pipeline and save state

* Including exception cause(s)

" | et the handler work out
* Which instruction(s) had exceptions
* Which to complete or flush: May require “manual” completion

= Simplifies hardware, but more complex handler software

* Not feasible for complex multiple-issue out-of-order pipelines
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