Jin-Soo Kim
(jinsoo.kim@snu.ac.kr)

Systems Software &
Architecture Lab.

Seoul National University

Fall 2019

Pipelining

Chap. 4.5

Introduction to Pipelining

Sequential Processing

71

4190.308: Computer Architecture | Fall 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

Parallel Processing (Multi-core)

BEE T 00>

1T RN SN AR

@D . 7e0 wrasm

M3 MY AR WG

4190.308: Computer Architecture | Fall 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

Pipelining

Laundry Example

" Sequential processing: Wash-Dry-Fold-Store

. 6 PM 7 8 9 10 11 12 1 2 AM
L BB B e
Task
order

. E

B

- [@E
) o=
i

={f]

Pipelined Laundry Example

* Overlapping execution

= Parallelism improves performance

6 PM 7 8 9 10 11 12 1 2 AM

Time

Task

order
A . O = Four loads:
5 . e Speedup =8/3.5=2.3
= Non-stop:
c e Speedup =2n/(0.5n+1.5)=4
D = number of stages

A RISC-V Pipeline

Five stages, one step per stage

IF:
ID:
EX:

MEM:

VVB:

Instruction fetch from memory
Instruction decode & register read
Execute operation or calculate address
Access memory operand

Write result back to register

Pipelined Instruction Execution

" Sequential execution

IF ID EX MEMWB | IF ID EX MEM WB | IF ID EX MEM WB
* Pipelined execution
IF | ID | EX MEM WB add x10, x11, x12
IF ID EX MEM WB sub x13, x14, x15
IF ID EX MEM WB and x5, x6, x7

Pipeline Performance

= Assume time for stages is
* |00ps for register read or write

* 200ps for other stages
* Compare piplined datapath with single-cycle datapath

read daCccess write time

200ps 100ps 200ps 200ps 100ps 800ps
sd 200ps 100ps 200ps 200ps 700ps
R-type 200ps 100ps 200ps 100ps 600ps

beq 200ps 100ps 200ps 500ps

Pipeline Performance (cont'd)

Single-cycle
(T. = 800ps)

Pipelined
(T. = 200ps)

Program

execution Time

order
(in instructions)

Id x1, 100(x4)
Id x2, 200(x4)

Id x3, 400(x4)

Program

execution .
Time

order
(in instructions)

Id x1, 100(x4)
Id x2, 200(x4)

Id x3, 400(x4)

200 400 600 800 1000 1200 1400 1600 1800
Instruction Data
fetch Reg| ALU access Reg
Instructi Dat
800 ps M ton ||Rea| AU | o2 | Reg
Instruction
800 ps fetch
800 ps
200 400 600 800 1000 1200 1400
Instruction Re ALU Data Re
fetch g access g
200ps |"en| reg| AU [252 e
200ps || [res| A | 2% e

200 ps 200 ps 200ps 200 ps 200 ps

11

Pipeline Speedup

= |f all stages are balanced

* j.e,all take the same time

Time between instructionsS,npipelined

Time between instructions,,eiined =
ptp Number of stages

* |f not balanced, speedup is less
" Speedup due to increased throughput

* |atency (time for each instruction) does not decrease

12

Pipelining and ISA Design

= RISC-V ISA designed for pipelining

= All instructions are 32-bits
* Easier to fetch and decode in one cycle
* cf.x86: |- to |7-byte instructions

* Few and regular instruction formats
* Source and destination register fields located in the same place

* Can decode and read registers in one step

" | oad/store addressing

 Can calculate address in 3 EX stage, access memory in 4" MEM stage

13

Pipeline Hazards

Hazards

= Situations that prevent starting the next instruction in the next cycle

= Structural hazard

* A required resource is busy

= Data hazard
* Need to wait (or stall) for previous instruction to complete its data read/write

= Control hazard

* Deciding on control action depends on previous instruction

15

Structural Hazard

= Conflict for use of a resource

* |n RISC-V pipeline with a single memory

* Load/store requires data access

* Instruction fetch would have to stall
for that cycle
- Would cause a pipeline “bubble”

* Hence, pipelined datapaths require
separate instruction/data memories
(or separate instruction/data caches)

= Register file also requires multiple
ports (for 2 reads and | write)

IF ID EX MEM WB Register write
IF ID EX MEM WB Memoryread/write
IF ID EX MEM WB
Register read IF ID EX MEM WB
Memory read IF ID EX MEM WB

16

Data Hazard

* An instruction depends on completion of data access by a previous
Instruction

= Also called “Read-After-Write (RAW)” hazard

» This hazard results from an actual need for communication

! 200 400 600 800 1000 1200 1400 1600
Time T T T T | T T ™

add x19, x0, x1 IF —E§|D SEX—MEM WB%

:
a
5/
s |

|
\
|

MEM

sub x2, x19, x3

17

Solutions to Data Hazard

" Freezing the pipeline
* Forwarding
* Compiler scheduling

" Out-Of-Order execution (discussed later)

Freezing the Pipeline

= Stall the pipeline until dependences are resolved

" ALU result to next instruction (2 stalls)

add

sub

Time
x19, x0, x1
X2, x19, x3

200 400 600

800

1000

1200

1400

1600
hard

WB |

|
—C D %E%ﬂ————hﬂEM

IF

B :
bubble bubble) (bubble bubble) (bubble
© @ O O O
bubble bubble bubble bubble bubble
@ @ O O O

—L 1D

=

MEM

N/

[

19

Forwarding (or Bypassing)

= Use result when it is computed
* Don’t wait for it to be stored in a register

* Requires extra connections in the datapath

Program
execution _ 200 400 600 800 1000
order Time I I . I T >
(in instructions))) .

add x19, x0, x1 IF &

sub x2, x19, x3 MEM

20

Forwarding: Load-Use Data Hazard

= Can’t always avoid stalls by forwarding

* If value not computed when needed

e Can’t forward backward in time!

Program
execution
order

(in instructions)

ld x1, é(xz)

sub x4, x1, x5

4190.308: Computer Architecture | Fall 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

Time

IF —= ID

200 400 600 800 1000 1200 1400
IF = 1D %—MEM WB !
bubble bubble bubble bubble bubble
O O O O O
' MEM WB

21

Forwarding: Multiple Readers

Time 200 400 600 8?0 1 0|00 1 2|00 1 4|00 1 6|0Ci
add x10, x4, X5 ; MEM]-—{We.
sub x6, x10, x4 0 >E \MEM s
and x7, x10, x© F D ﬁ} vEM— e
xor x8, x10, x3 IF —EE >EX MEM—@B

4190.308: Computer Architecture | Fall 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

Forwarding: Multiple Writers

Time 20|0 4C|)O BCIJO 8CI)O 1 0|00 1 2|00 1 4|00 1 6|00=
add x10, x4, x5 F —EE SEX——|MEM
sub x10, x5, X6 F D >E s
addi x10, x2, 1] vEM— e
xor x8, x19, x7/ IF _ PEX MEM—@B

4190.308: Computer Architecture | Fall 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

Compiler Scheduling

= Reorder code to avoid use of load result in the next instruction
* C code forv[3] v[io] + v[1]; v[4] = v[O] + v[2];

1d x1, 0(x0) 1d
14 (2)800) I¢
Stall —— add X3, xl,@ 1d

sd x3, 24(x0) add
1d (x4)36(x0 sd
stall —— add x5, x;(x4) add
sd x5, 32(x0) sd x5, 32(x0)

13 cycles 11 cycles

Control Hazard

* Branch determines flow of control
* Fetching next instruction depends on branch outcome

* Pipeline can’t always fetch correct instruction: still working on ID stage of branch

* |n RISC-V pipeline
* Need to compare registers and compute target early in the pipeline
* Add hardware to do it in ID stage

4190.308: Computer Architecture | Fall 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

25

Solutions to Control Hazard

= Stall on branch
* Branch prediction

* Delayed branch (compiler scheduling to avoid stalls)

Stall on Branch

" Wit until branch outcome determined before fetching next instruction

Program
execution
order

(in instructions)

add x4, x5, x6

beq x1, x0, 40

or X7, x8, x9
\/

200 400 600 800

1000 1200

1400

Time

Instruction
fetch

Reg ALU Data Reg
access

B E—

200 ps

Instruction Data
fetch access

bubble/(bubbley(bubble/(bubble bubble
O) @

»{Instruction Data
fetch access

400 ps

Reg

27

Branch Prediction

* Longer pipelines can’t readily determine branch outcome early

* Stall penalty becomes unacceptable

* Predict outcome of branch

* Only stall if prediction is wrong

* |n RISC-V pipeline
* Can predict branches not taken

* Fetch instruction after branch, with no delay
* Cancel the fetched instruction if the prediction was wrong

28

More-Realistic Branch Prediction

= Static branch prediction
* Based on typical branch behavior

* Example: loop and if-statement branches
— Predict backward branches taken
— Predict forward branches not taken

* Dynamic branch prediction

e Hardware measures actual branch behavior
— e.g., record recent history of each branch

* Assume future behavior will continue the trend
— When wrong, stall while re-fetching and update history

4190.308: Computer Architecture | Fall 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

29

Summary

* Pipelining improves performance by increasing instruction throughput
* Executes multiple instructions in parallel

* Each instruction has the same latency

" Subject to hazards

e Structural, data, control

" |nstruction set design affects complexity of pipeline implementation

30

