
Pipelining

Jin-Soo Kim
(jinsoo.kim@snu.ac.kr)

Systems Software &
Architecture Lab.

Seoul National University

Fall 2019

Chap. 4.5

Introduction to Pipelining

4190.308: Computer Architecture | Fall 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 3

4190.308: Computer Architecture | Fall 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 4

4190.308: Computer Architecture | Fall 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 5

4190.308: Computer Architecture | Fall 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 6

▪ Sequential processing: Wash-Dry-Fold-Store

4190.308: Computer Architecture | Fall 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 7

▪ Overlapping execution

▪ Parallelism improves performance

▪ Four loads:
• Speedup = 8 / 3.5 = 2.3
▪ Non-stop:
• Speedup = 2n / (0.5n + 1.5) ≃ 4

= number of stages

4190.308: Computer Architecture | Fall 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 8

▪ Five stages, one step per stage

▪ IF: Instruction fetch from memory

▪ ID: Instruction decode & register read

▪ EX: Execute operation or calculate address

▪ MEM: Access memory operand

▪ WB: Write result back to register

4190.308: Computer Architecture | Fall 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 9

▪ Sequential execution

▪ Pipelined execution

IF ID EX MEM WB IF ID EX MEM WB IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

add x10, x11, x12

sub x13, x14, x15

and x5, x6, x7

4190.308: Computer Architecture | Fall 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 10

▪ Assume time for stages is

• 100ps for register read or write

• 200ps for other stages

▪ Compare piplined datapath with single-cycle datapath

Inst.
Inst.
fetch

Register
read

ALU op.
Memory

access
Register

write
Total
time

ld 200ps 100ps 200ps 200ps 100ps 800ps

sd 200ps 100ps 200ps 200ps 700ps

R-type 200ps 100ps 200ps 100ps 600ps

beq 200ps 100ps 200ps 500ps

4190.308: Computer Architecture | Fall 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 11

Single-cycle
(Tc = 800ps)

Pipelined
(Tc = 200ps)

4190.308: Computer Architecture | Fall 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 12

▪ If all stages are balanced

• i.e., all take the same time

▪ If not balanced, speedup is less

▪ Speedup due to increased throughput

▪ Latency (time for each instruction) does not decrease

𝑻𝒊𝒎𝒆 𝒃𝒆𝒕𝒘𝒆𝒆𝒏 𝒊𝒏𝒔𝒕𝒓𝒖𝒄𝒕𝒊𝒐𝒏𝒔𝒑𝒊𝒑𝒆𝒍𝒊𝒏𝒆𝒅 =
𝑻𝒊𝒎𝒆 𝒃𝒆𝒕𝒘𝒆𝒆𝒏 𝒊𝒏𝒔𝒕𝒓𝒖𝒄𝒕𝒊𝒐𝒏𝒔𝒏𝒐𝒏𝒑𝒊𝒑𝒆𝒍𝒊𝒏𝒆𝒅

𝑵𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒔𝒕𝒂𝒈𝒆𝒔

4190.308: Computer Architecture | Fall 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 13

▪ RISC-V ISA designed for pipelining

▪ All instructions are 32-bits

• Easier to fetch and decode in one cycle

• cf. x86: 1- to 17-byte instructions

▪ Few and regular instruction formats

• Source and destination register fields located in the same place

• Can decode and read registers in one step

▪ Load/store addressing

• Can calculate address in 3rd EX stage, access memory in 4th MEM stage

Pipeline Hazards

4190.308: Computer Architecture | Fall 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 15

▪ Situations that prevent starting the next instruction in the next cycle

▪ Structural hazard

• A required resource is busy

▪ Data hazard

• Need to wait (or stall) for previous instruction to complete its data read/write

▪ Control hazard

• Deciding on control action depends on previous instruction

4190.308: Computer Architecture | Fall 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 16

▪ Conflict for use of a resource

▪ In RISC-V pipeline with a single memory

• Load/store requires data access

• Instruction fetch would have to stall

for that cycle

→Would cause a pipeline “bubble”

• Hence, pipelined datapaths require

separate instruction/data memories

(or separate instruction/data caches)

▪ Register file also requires multiple

ports (for 2 reads and 1 write)

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

Register write

Register read

Memory read

Memory read/write

4190.308: Computer Architecture | Fall 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 17

▪ An instruction depends on completion of data access by a previous

instruction

▪ Also called “Read-After-Write (RAW)” hazard

▪ This hazard results from an actual need for communication

sub x2, x19, x3

add x19, x0, x1

4190.308: Computer Architecture | Fall 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 18

▪ Freezing the pipeline

▪ Forwarding

▪ Compiler scheduling

▪ Out-Of-Order execution (discussed later)

4190.308: Computer Architecture | Fall 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 19

▪ Stall the pipeline until dependences are resolved

▪ ALU result to next instruction (2 stalls)

sub x2, x19, x3

add x19, x0, x1

4190.308: Computer Architecture | Fall 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 20

▪ Use result when it is computed

• Don’t wait for it to be stored in a register

• Requires extra connections in the datapath

sub x2, x19, x3

add x19, x0, x1

4190.308: Computer Architecture | Fall 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 21

▪ Can’t always avoid stalls by forwarding

• If value not computed when needed

• Can’t forward backward in time!

sub x4, x1, x5

ld x1, 0(x2)

4190.308: Computer Architecture | Fall 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 22

add x10, x4, x5

sub x6, x10, x4

and x7, x10, x0

xor x8, x10, x3

4190.308: Computer Architecture | Fall 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 23

add x10, x4, x5

sub x10, x5, x6

addi x10, x2, 1

xor x8, x10, x7

x

x

o

4190.308: Computer Architecture | Fall 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 24

▪ Reorder code to avoid use of load result in the next instruction

▪ C code for v[3] = v[0] + v[1]; v[4] = v[0] + v[2];

ld x1, 0(x0)

ld x2, 8(x0)

add x3, x1, x2

sd x3, 24(x0)

ld x4, 16(x0)

add x5, x1, x4

sd x5, 32(x0)

ld x1, 0(x0)

ld x2, 8(x0)

ld x4, 16(x0)

add x3, x1, x2

sd x3, 24(x0)

add x5, x1, x4

sd x5, 32(x0)

13 cycles 11 cycles

Stall

Stall

4190.308: Computer Architecture | Fall 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 25

▪ Branch determines flow of control

• Fetching next instruction depends on branch outcome

• Pipeline can’t always fetch correct instruction: still working on ID stage of branch

▪ In RISC-V pipeline

• Need to compare registers and compute target early in the pipeline

• Add hardware to do it in ID stage

4190.308: Computer Architecture | Fall 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 26

▪ Stall on branch

▪ Branch prediction

▪ Delayed branch (compiler scheduling to avoid stalls)

4190.308: Computer Architecture | Fall 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 27

▪ Wait until branch outcome determined before fetching next instruction

4190.308: Computer Architecture | Fall 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 28

▪ Longer pipelines can’t readily determine branch outcome early

• Stall penalty becomes unacceptable

▪ Predict outcome of branch

• Only stall if prediction is wrong

▪ In RISC-V pipeline

• Can predict branches not taken

• Fetch instruction after branch, with no delay

• Cancel the fetched instruction if the prediction was wrong

4190.308: Computer Architecture | Fall 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 29

▪ Static branch prediction

• Based on typical branch behavior

• Example: loop and if-statement branches

– Predict backward branches taken

– Predict forward branches not taken

▪ Dynamic branch prediction

• Hardware measures actual branch behavior

– e.g., record recent history of each branch

• Assume future behavior will continue the trend

– When wrong, stall while re-fetching and update history

4190.308: Computer Architecture | Fall 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 30

▪ Pipelining improves performance by increasing instruction throughput

• Executes multiple instructions in parallel

• Each instruction has the same latency

▪ Subject to hazards

• Structural, data, control

▪ Instruction set design affects complexity of pipeline implementation

