
Machine-level

Representation of

Programs

Jin-Soo Kim
(jinsoo.kim@snu.ac.kr)

Systems Software &
Architecture Lab.

Seoul National University

Spring 2019

4190.308: Computer Architecture | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 2

짬뽕라면

준비시간 :10분, 조리시간 :10분

재료
라면 1개, 스프 1봉지, 오징어 1/4마리, 호박
1/4개, 양파 1/2개, 양배추 1장, 당근 1/4개, 물
3컵(600cc)

만드는 법
1.오징어는 껍질을 벗기고 깨끗하게 씻어 칼집으로 모양을 낸다.
2.호박, 양파, 양배추는 모두 채썬다.
3.냄비에 물 3컵을 붓고 끓인다.
4.물이 끓으면 스프를 넣고 오징어와 야채를 넣어 충분히 맛이 우러나도록 5분 정도 끓여준다.
5.끓으면 면을 넣어 익힌다.

Ingredients
≈ Data

Directions ≈ Instructions
Source: http://user.chol.com/~yugenie/yo/jjambong.html

4190.308: Computer Architecture | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 3

▪ Central Processing Unit

• PC (Program Counter)

– Address of next instruction

– Called “EIP” (IA-32) or “RIP” (x86-64)

• Register file

– Heavily used program data

• Condition codes

– Store status information about most

recent arithmetic operation

– Used for conditional branching

ALU

PC

Register

File

Cond. Codes

4190.308: Computer Architecture | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 4

Code

Data

Fetch I Mem[PC]
Decode I
Execute I
Update PC

PC

4190.308: Computer Architecture | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 5

▪ The visible interface between software and hardware

▪ What the user (OS, compiler, …) needs to know to reason about how

the machine behaves

▪ Abstracted from the details of how it may accomplish its task

“the attributes of a system as seen by the programmer, i.e., the conceptual
structure and functional behavior, as distinct from the organization of the
data flow and controls, the logical design, and the physical implementation”

-- Amdahl, Blaauw, and Brooks, Architecture of the IBM System/360,
IBM Journal of Research and Development, April 1964.

4190.308: Computer Architecture | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 6

▪ Above: how to program machine

• Processors execute instructions in sequence

▪ Below: what needs to be built

• Use variety of tricks to make it run fast

▪ Instruction set

▪ Processor registers

▪ Memory addressing modes

▪ Data types and representations

▪ Byte ordering, …

ISA

Compiler OS

CPU Design
(Microarchitecture)

Circuit Design

Chip Layout

Application
Program

4190.308: Computer Architecture | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 7

Itanium
(IA-64)

XScale
(IXA)

Intel 64
(IA-32e, EM64T, x86-64)

P5

Pentium

Pentium
MMX

P5, P54C,
P54CS

―

P55C,
Tillamook

P6

Pentium Pro
Pentium II
Pentium III

Pentium Pro
―

Klamath,
Deschutes

―

Katmai,
Coppermine,

Tualatin

NetBurst

Pentium 4
Pentium D

Willamette,
Northwood,

Prescott,
Cedar Mill

―

Smithfield,
Presler

Pentium M

Banias,
Dothan

Core Duo/Solo

Yonah

Core

Core 2
Quad/Duo/Solo

Conroe,
Allendale,
Wolfdale

―

Merom,
Penryn

―

Kentsfield,
Yorkfield

Microarchitecture
Brand Name

Processor
Brand Name

Processor
Code Name

Architecture
Brand Name

Mobile

IA-32

Coffee Lake

Core i3, i5, i7, i9
Xeon E

Core i9-9900K
Core i7-9700K
Core i5-9600K
Core i3-9350K

―

Xeon E 2186G
Xeon E 2176G

―

...

4190.308: Computer Architecture | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 8

▪ Evolutionary design

• Starting in 1978 with 8086

• Added more features as time goes on

• Still support old features, although obsolete

• Totally dominate laptop/desktop/server market

▪ Complex Instruction Set Computer (CISC)

• Many different instructions with many different formats

• Hard to match performance of Reduced Instruction Set Computer (RISC)

• But Intel has done just that!

– In terms of speed. Less so for low power

4190.308: Computer Architecture | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 9

▪ Historically

• AMD has followed just behind Intel

• A little bit slower, a lot cheaper

▪ Then

• Recruited top circuit designers from Digital Equipment Corp. and other downward

trending companies

• Built Opteron: touch competitor to Pentium 4

• Developed x86-64, their own extension to 64 bits

▪ Recent years,

• Intel leads the world in semiconductor technology

• AMD has fallen behind, but recently strikes back with Ryzen (2017)

4190.308: Computer Architecture | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 10

▪ 2001: Intel attempts radical shift from IA32 to IA64

• Totally different architecture (Itanium)

• Executes IA32 code only as legacy

• Performance disappointing

▪ 2003: AMD steps in with evolutionary solution

• x86-64 (now called “AMD64” or “Intel 64”)

▪ 2004: Intel announces EM64T extension to IA32

• Extended Memory 64-bit Technology

• Almost identical to x86-64!

▪ All but low-end x86 processors support x86-64

• But, lots of code still runs in 32-bit mode

4190.308: Computer Architecture | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 11

▪ Desktop: Core i9-9900K (Coffee Lake)

• 9th generation Intel Core i9 processor with 14nm

• 8 cores (16 threads) @ 3.6 – 5.0 GHz, 95W

• Max 128 GB Memory (DDR4-2666), 16 MB L3 Cache

• Integrated Graphics (UHD 630)

• 16 PCIe 3.0 lanes

▪ Server: Xeon Platinum 8180M Processor (Skylake)

• 6th generation Intel Xeon Scalable Processor with 14nm

• 28 cores (56 threads) @ 2.5 – 3.8 GHz, 205W

• Max 1.5 TB Memory (DDR4-2666), 38.5 MB L3 Cache

• 48 PCIe 3.0 lanes

4190.308: Computer Architecture | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 12

▪ gcc -Og p1.c p2.c -o p
• Use basic optimizations (-Og)

• Put resulting binary in file p

Compiler (gcc -Og -S)

Assembler (gcc or as)

Linker (gcc or ld)

text C program (p1.c p2.c)

text Asm program (p1.s p2.s)

binary Object program (p1.o p2.o)

binary Executable program (p)

Static libraries
(.a)

4190.308: Computer Architecture | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 13

▪ Machine code (or binary code)

• The byte-level programs that a processor executes

▪ Assembly code

• A text representation of machine code

▪ gcc -Og -S sum.c

long sum (long x, long y) {
return x + y;

}

sum:
leaq (%rdi,%rsi),%rax
ret

sum.c sum.s

0000000000000000 <sum>:
0x48 0x8d 0x04 0x37 0xc3

sum.o

4190.308: Computer Architecture | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 14

▪ Assembler

• Translates .s into .o

• Binary encoding of each instruction

• Nearly-complete image of executable code

• Missing linkages between code in different files

▪ Linker

• Resolves references between files

• Combines with static run-time libraries

– e.g. code for malloc(), printf(), etc.

• Some libraries are dynamically linked

– Linking occurs when program begins execution

0x4004d6 <sum>:
0x48
0x8d
0x04
0x37
0xc3

• Total of 5 bytes

• Each instruction 1
or 4 bytes

• Starts at address
0x4004d6

4190.308: Computer Architecture | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 15

▪ “integer” data of 1, 2, 4, or 8 bytes

• Data values

• Addresses (untyped pointers)

• (cf.) In x86-64, a “word” means 16-bit data

▪ Floating point data of 4, 8, or 10 bytes

▪ No aggregated types such as arrays

or structures

• Just contiguously allocated bytes in memory

4190.308: Computer Architecture | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 16

▪ Perform an arithmetic or logical function on register or memory data

▪ Transfer data between memory and register

• Load data from memory into register

• Store register data into memory

▪ Transfer control

• Unconditional jump

• Conditional branch

• Procedure call and return

4190.308: Computer Architecture | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 17

▪ Disassembler: objdump -d sum.o

• Useful tool for examining object code

• Analyzes bit pattern of series of instructions

• Produces approximate rendition of assembly code

• Can be run on either a.out (complete executable) or .o (object code) file

sum.o: file format elf64-x86-64

Disassembly of section .text:

0000000000000000 <sum>:
0: 48 8d 04 37 lea (%rdi,%rsi,1),%rax
4: c3 retq

4190.308: Computer Architecture | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 18

▪ Disassemble procedure, sum

▪ Examine 5 bytes starting at sum

$ gcc –Og –g sum.c main.c
$ gdb a.out
(gdb) disassemble sum
Dump of assembler code for function sum:
0x00000000004004d6 <+0>: lea (%rdi,%rsi,1),%rax
0x00000000004004da <+4>: retq
End of assembler dump.

(gdb) x/5 sum
0x4004d6 <sum>: 0x48 0x8d 0x04 0x37 0xc3

4190.308: Computer Architecture | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 19

▪ Intel/Microsoft differs from ATT/GAS (GNU Assembler)

• Operands listed in opposite order
mov Dest, Src movq Src, Dest

• Constants not preceded by ‘$’, denote hex with ‘h’ at end
sub rsp,100h subq $0x100,%rsp

• Operand size indicated by operands rather than operator suffix
cmp qword ptr [rbp-8],0 cmpq $0,-8(%rbp)

• Addressing format shows effective address computation
mov rax, qword ptr [rax*4+100h] movq $0x100(,%rax,4),%rax

(gdb) set disassemble-flavor intel
(gdb) disassemble sum
0x00000000004004d6 <+0>: lea rax,[rdi+rsi*1]
0x00000000004004da <+4>: ret

4190.308: Computer Architecture | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 20

▪ Intel 64 and IA-32 Architectures Software Developer’s Manuals

• Volume 1: Basic architecture

• Volume 2: Instruction set reference, A-Z

• Volume 3: System programming guide

• Volume 4: Model-specific registers

▪ Available online:

• http://software.intel.com/en-us/articles/intel-sdm

http://software.intel.com/en-us/articles/intel-sdm

Byte Ordering

4190.308: Computer Architecture | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 22

▪ Physical memory

• DRAM chips can read/write 4, 8, 16 bits

• DRAM modules can read/write 64 bits

▪ Programmer’s view of memory

• Conceptually, a very large array of bytes

• Stored-program computers: keeps program codes

and data in memory

• Running programs share the physical memory

• OS handles memory allocation and management

.

.

.

00000000

FFFFFFFF

4190.308: Computer Architecture | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 23

▪ Each computer has a “word size”

• Nominal size of integer-valued data

– Including addresses (= pointer size)

• Until recently, most machines used 32-bit (4-byte) words

– Limits addresses to 4 GB

– Becoming too small for memory-intensive applications

• Increasingly, machines have 64-bit (8-byte) word size
– Potential address space ≃18.4 х 1018 bytes (18 EB)

– x86-64 machines support 48-bit addresses: 256 TB

• Machines support multiple data formats

– Fractions or multiples of word size

– Always integral number of bytes

4190.308: Computer Architecture | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 24

C Data Type Typical 32-bit Typical 64-bit x86-64

char 1 1 1

short 2 2 2

int 4 4 4

long 4 8 8

long long 8 8 8

float 4 4 4

double 8 8 8

long double - - 10/16

pointer 4 8 8

4190.308: Computer Architecture | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 25

▪ How are the bytes within a multi-byte word ordered in memory?

▪ Conventions

• Big endian: Sun, PowerPC Mac, Internet

• Little endian: Intel x86, ARM running Android & iOS

▪ Note:

• Alpha and PowerPC can run in either mode, with the byte ordering convention

determined when the chip is powered up

• Problem when the binary data is communicated over a network between different

machines

4190.308: Computer Architecture | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 26

▪ Big endian

• Least significant byte has highest address

▪ Little endian

• Least significant byte has lowest address

Register Register

Memory Memory

Big endian Little endian

http://en.wikipedia.org/wiki/File:Big-Endian.svg
http://en.wikipedia.org/wiki/File:Little-Endian.svg

4190.308: Computer Architecture | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 27

▪ Disassembly

• Text representation of binary machine code

• Generated by program that reads the machine code

▪ Example fragment

▪ Deciphering numbers:

Address Instruction Code Assembly Rendition

8048365: 5b pop %ebx
8048366: 81 c3 ab 12 00 00 add $0x12ab,%ebx
804836c: 83 bb 28 00 00 00 00 cmpl $0x0,0x28(%ebx)

Value: 0x12ab
Pad to 32 bits: 0x000012ab
Split into bytes: 00 00 12 ab
Reverse: ab 12 00 00

4190.308: Computer Architecture | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 28

▪ What is the output of this program?

• Solaris/SPARC: ?

• Linux/x86-64: ?

#include <stdio.h>

union {
int i;
unsigned char c[4];

} u;

int main () {
u.i = 0x12345678;
printf (“%x %x %x %x\n”,

u.c[0], u.c[1], u.c[2], u.c[3]);
}

4190.308: Computer Architecture | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 29

▪ Strings in C

• Represented by array of characters

• Each character encoded in ASCII format

– Standard 7-bit encoding of character set

– Character ‘0’ has code 0x30

– Digit i has code 0x30 + I

• String should be null-terminated

– Final character = 0x00

▪ Compatibility

• Byte ordering not an issue

char S[6] = "15213";

Linux/Alpha S Sun S

32
31

31
35

33
00

32
31

31
35

33
00

4190.308: Computer Architecture | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 30

▪ It’s all about bits & bytes

• Numbers, programs, text, …

▪ Different machines follow different conventions

• Word size

• Byte ordering

• Representations (integer, floating-point)

▪ When programming, be aware of

• Type casting & mixed signed/unsigned expressions

• Overflow

• Error propagation

• Byte ordering

