Jin-Soo Kim
(jinsoo.kim@snu.ac.kr)

Systems Software &
Architecture Lab.

Seoul National University

Spring 2019

CPU Performance

Performance Issues

Measure, analyze, report, and summarize
Make intelligent choices
See through the marketing hype

Key to understanding underlying organizational motivation

Questions
* Why is some hardware better than others for different programs?

* What factors of system performance are hardware related?
(e.g., Do we need a new machine or a new operating system?)

* How does the machine’s instruction set affect performance!

Relative Performance

" Define
Performance = 1/Execution Time

= “Xis n times faster thanY”

Performance y =~ Execution time y
_ —n

Performancey Execution time yx

* Example: time taken to run a program
* |0s on machine A, I5s on machine B
* Execution Timeg / Execution Time, = I5s/ 10s = 1.5
* Machine A is 1.5 times faster than machine B

CPU (Execution) Time

* “lron law of CPU performance”

_ Seconds Cycles Seconds
CPU Time = = X
Program Program Cycle
Instructions Cycles Seconds

X — X
Program Instruction Cycle

Instruction Count X CPI X Clock Cycle Time

Instruction Count X CPI
Clock Rate

CPI

" (Average) Cycles Per Instruction

Clock Cycles

Instruction Count Instruction Count

* Example: CPI =043 x| +021 x2+0.12x2+024x2=1.57

Instruction Class Frequency CPI.
ALU operations 43% 1
Loads 21% 2
Stores 12% 2
Branches 24% 2

O

CPU Time = Instruction Count X CPI X Clock Cycle Time

Instruction
Clock Cycle
Count

Algorithm JAN
Programming language O O
Compiler O O

ISA O O

O

Microarchitecture

O O O

Technology

CPI for PIPE

= CPI= 1.0

* Fetch instruction each clock cycle

* Effectively process new instruction almost every cycle
(Although each individual instruction has latency of 5 cycles)

= CPI>1.0

e Sometimes must stall or cancel branches
= Computing CPI
* C clock cycles

* | instructions executed to completion
* B bubbles injected (C = | + B)
CPI=C/I=(+B)/I=1.0+

4190.308: Computer Architecture | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

B/l

Average penalty due to bubbles

Performance Penalties due to Bubbles

LP: Penalty due to load/use hazard stalling (LP =0.25*%0.20*1 = 0.05) | Typical value
Fraction of instructions that are loads 0.25

Fraction of load instructions requiring stall 0.20

Number of bubbles injected each time

MP: Penalty due to mispredicted branches (MP =0.20*0.40*2 = 0.16) _

Fraction of instructions that are conditional jumps 0.20

Fraction of conditional jumps mispredicted 0.40

Number of bubbles injected each time 2
RP: Penalty due to ret instructions (RP=0.0

Fraction of instructions that are returns 0.02

Number of bubbles injected each time 3

* Net effect of penalties: 0.05 + 0.16 + 0.06 = 0.27 (CPI = 1.27)

SPEC CPU Benchmark

* SPEC (Standard Performance Evaluation Corporation)

* A non-profit organization that aims to “produce, establish, maintain and endorse a
standardized set” of performance benchmarks for computers

* CPU, Power, HPC (High-Performance Computing),VVeb servers, Java, Storage, ...
* http://www.spec.org

= SPEC CPU benchmark

* An industry-standardized, CPU-intensive benchmark suite, stressing a system’s
processor, memory subsystem and compiler
— Companies have agreed on a set of real program and inputs
— Valuable indicator of performance (and compiler technology)

« CPU89 - CPU92 - CPU95 - CPU2000 - CPU2006 - CPU2017

4190.308: Computer Architecture | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

http://www.spec.org/

Benchmark Games

An embarrassed Intel Corp. acknowledged Friday that a bug in a software

program known as a compiler had led the company to overstate the speed of its
microprocessor chips on an industry benchmark by 10 percent. However,
industry analysts said the coding error...was a sad commentary on a common
industry practice of “cheating” on standardized performance tests...The error was
pointed out to Intel two days ago by a competitor, Motorola ...came in a test
known as SPECintg2...Intel acknowledged that it had “optimized” its compiler to
improve its test scores. The company had also said that it did not like the practice
but felt to compelled to make the optimizations because its competitors were
doing the same thing...At the heart of Intel’s problem is the practice of “tuning”
compiler programs to recognize certain computing problems in the test and then
substituting special handwritten pieces of code...

Saturday, January 6, 1996 New York Times

10

SPEC CPU2017

= SPECspeed suites
* |0 integer benchmarks and 10 floating point benchmarks

* Always run one copy of each benchmark
— Negligible 1/O, so focuses on CPU performance

* Normalize relative to reference machine
— Sun Microsystems’ historical server: Sun Fire V490 with 2100MHz UltraSPARC-IV+ chips

* Summarize as geometric mean of performance ratios: .
1_[Execution time ratio ;

= SPECrate suites -
* |0 integer benchmarks and |3 floating point benchmarks

* Run multiple concurrent copies of each benchmark (for throughput)

4190.308: Computer Architecture | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

11

Integer Benchmarks (SPECspeed 2017 Integer) Floating Point Benchmarks (SPECspeed 2017 Floating Point)

perlbench
gcc

mcf

omnetpp
xalancbmk

X264

deepsjeng

leela
exchange2

XZ

C

C

C++

C+

C

C++

C++

Fortran

C

362 Perl interpreter

1304 GNU C compiler

3 Route planning

134 Discrete event simulation —
computer network

520 XML to HTML conversion via XSLT

96 Video compression
10 Al: alpha-beta tree search (Chess)
21 Al: Monte Carlo tree search (Go)

Al: Recursive solution generator
(Sudoku)

33 General data compression

bwaves
cactuBSSN

lbm

wrf

cam4

pop2

Imagick

nab
fotonik3d

roms

Fortran

C++, C,
Fortran
C

Fortran,
C
Fortran,
C
Fortran,
C

C
C

Fortran

Fortran

1 Explosion modeling
257 Physics: relativity

1 Fluid dynamics

991 Weather forecasting
407 Atmosphere modeling

338 Wide-scale ocean modeling

259 Image manipulation

24 Molecular dynamics
14 Computational Electromagnetics

210 Regional ocean modeling

CINT2006 for Intel Core i7-920

" 4 cores @ 2.66GHz

Instruction Clock cycle time Time Time

Description Name count x 10° (seconds x 10-?) | (seconds) | (seconds) | SPECratlo
Interpreted string processing | per! 2252 0.60 0.376 508 9770 19.2
Block-sorting bzip2 2390 0.70 0.376 629 2650 15.4
compression
GNU C compiler gece 794 1.20 0.376 358 8050 225
Combinatorial optimization mict 221 2.66 0.376 221 9120 41.2
Go game (Al) go 1274 1.10 0.376 527 10490 19.9
Search gene saquence hmmer 2616 0.60 0.376 540 Q330 15.8
Chess game (Al) sjeng 1948 0.80 0.376 586 12100 20,7
Quantum computer libguantum 659 0.44 0.376 109 20720 120.0
simulation
Video compression h2cdave 3793 0.50 0.376 713 22130 31.0
Discrete event omnetpp 367 2.10 0.376 290 6250 21.5
simulation library
Games/path finding astar 1250 1.00 0.376 470 TO20 14.9
AML parsing xalanchmk 1045 0.70 0.376 275 ES00 251
Geometric mean - - - - - - 25.7

4190.308: Computer Architecture | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

13

Uniprocessor Performance

Parformance (vs. VAX-11/780)

100,000

0,000 == = #7 === m 2 m e e e e e AND Athion 64,2.8 G

A oo

Intal Xeon 4 cores 3.6 GHz (Boost to 4.0)
Intel Cora i7 4 cores 3.4 GHz (boost to 2.8 GHz)
Intel Xeon & coras, 3.3 GHz (boost to 3.6 GHz) 34,067
Intal Xeon 4 cores, 3.3 GHz (boost to 2.6 GHz) -
Intel Core i7 Extreme 4 cores 3.2 GHz (boost to 2.5 GHz) __",:_.;..'-:2"4 129"
Intel Core Duo Extrema 2 cores, 3.0 GHz i :“-;42'1 &7
Intel Core 2 Extreme 2 cores, 2.9 GHz E;'?gr

AMD Athlon, 2.6 GHz

Intel Xeon EE 3.2 GHz 7,108
Intel DES0EMY R motherboard (3.06 GHz, Pertium 4 processor with Hy per-threading Technology) I
IBM Powerd, 1.3 GHz g* 4195
Irtel WCE20 mothertoard, 1.0 GHz Pentium Il processor
Professional Work station XP1000, 857 MHz 212644 '
00 <= - <o mem e e meemce e e e e s e o e oo ITE] AlphaSaver 8400 575, 575 MHZ 21264, g% T e
22%/year

111 T P b s eyt et e e

IBM RSE000/'540, 30 MHz
MIPS M2000, 25 MHz
MIPS MA20, 167 MHz

52%/year
Constrained by

power, ILP, and
memory latency

1.5, VAX-11/785

16978 1980 1982 16984 1086 1988 1980 1962 1994 1996 1888 2000 2002 2004 2006 2008 2010 2mz 2014

14

Modern CPU Design

Modern CPU Architecture

Instruction Control
crrrnarrsrrsnsrnaraas Address

Register
File

Register : Prediction

struction

Operations

Updates| { QK?

Operation Results Addr. Addr

Data Data

Execution

4190.308: Computer Architecture | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

16

Intel P6 (1995) vs. Skylake (2015)

Fro nt End Instruction .
W 5 - Gache Tag L1 Instruction Cache
nstr . ranc HOP Cache 32KB 8-Wa Instructi
(32 entry) 8K Instruction Cache -— Predicition e Y PN |
(BPU
| ~-128 64 -
v Instruction Fetch
Branch o 1 uop
Target -: Simple Decoder I——b & PreDecode
Buffer s/ Simple Decod 1uop | Reorder l
1 > Simple Decoder === "5]
— General Decoder 225, (40 entries) Ty
4-Way Decode
Instruction ‘ T I o R
Fetch Unit| IN-ORDER | Uop Sequencer N Sompex [omee [e [|
SECTION 0
3 uops _uuns l ”“El"DPE l
Dwdd(i{(}r:a{;n E:ﬂ)ar (DSB) Allccation Queue (IDQ) (128, 2x64 pOPs)
Reservation Station {15k 0P & en
(20 entries)
| e e Coman |
I;\%%?, Integer ’ Integer l l l l ,,,,.,,m.,l l l l
- Unit Unifiec! Rese rvation Station [nsj
(180 Hagsm rs) (188 Hagstars) a
o 5
(vriN)
=
Memory Reorder = E §
Buffer (MOB) 2
1 store 1 load load data -~ 32
Data TLB
(64 entry) BK Dua|—P0rted Data Cache - Store Buffer & Forwarding
(56 entries)
54 - SZBny' store
Data TLB |
System Bus Interface L2 Cache Interface -— L1 Data Cache [2127
I(_;:d quue}r 32KB 8-Way
y 'y ry 2x32B/Cycle load SEnos
. . Memory
36 addr 1 64 data 1 64 data Execution Engine
A A 4 k4

4190.308: Computer Architecture | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

Instruction Control

* Grabs instruction bytes from memory

* Based on current PC + Predicted targets for predicted branches

* Hardware dynamically guesses whether branches taken/not taken and (possibly)

branch target

" Translates instructions into Operations

* Primitive steps required to perform
instruction

* Typical instruction requires |-3 operations

* Converts register reference into Tags

* Abstract identifier linking destination of
one operation with sources of later operations

4190.308: Computer Architecture | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

Instruction Control

- —
Register
File

struction

Operations

18

Execution Units

= Multiple functional units
o Register APrediction Operations
* Each can operate in independently =~ Updates | ! OK?

= Operations performed as soon
as operands available

* Not necessarily in program order

Operation Results Addr Addi

* Within limits of functional units

Data Data

= Control logic

* Ensures behavior equivalent to Execution
sequential program execution

4190.308: Computer Architecture | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

= Multiple instructions can execute in para

lel

2 load

1 store

4 integer

2 FP
multiply

1 FP
add/divide

= Some instructions take > | cycle, but can be pipelined

Load / Store

Integer Multiply

Integer Divide

Double/Single FP Multiply

Double/Single FP Add

Double/Single FP Divide

Haswell Operation

" Translates instructions dynamically into “pops”
* ~ |18 bits wide

* Holds operation, two sources, and destination

" Executes pops with “Out of Order” engine

* pops executed when
— Operands available
— Functional unit available

* Execution controlled by “Reservation Stations”
— Keeps track of data dependencies between pops
— Allocates resources

4190.308: Computer Architecture | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

21

High-Performance Branch Prediction

= Ciritical to performance
* Typically 11 — |5 cycle penalty for misprediction

* Branch Target Buffer (BTB)

e 512 entries

* 4 bits of history
* Adaptive algorithm: Can recognize repeated patterns, e.g., alternating taken — not
taken

* Handling BTB misses

* Detect in ~cycle 6
* Predict taken for negative offset, not taken for positive (Loops vs. conditionals)

4190.308: Computer Architecture | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

22

Example Branch Prediction

= Branch history
* Encode information about prior history of branch instructions

* Predict whether or not branch will be taken

NT NT NT

TN TN .
T @) <Yes?) (No?) (@ NT
)y N N

T T T

= State machine
* Each time branch taken, transition to right
* When not taken, transition to left
* Predict branch taken when in state Yes! or Yes?

4190.308: Computer Architecture | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

23

Processor Summary

= Design technique
 Create uniform framework for all instructions

— Want to share hardware among instructions

* Connect standard logic blocks with bits of control logic
= Operation
 State held in memories and clocked registers

* Computation done by combinational logic
* Clocking of registers/memories sufficient to control overall behavior

* Enhancing performance
* Pipelining increases throughput and improves resource utilization

e Must make sure to maintain ISA behavior

4190.308: Computer Architecture | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

24

