
CPU Performance

Jin-Soo Kim
(jinsoo.kim@snu.ac.kr)

Systems Software &
Architecture Lab.

Seoul National University

Spring 2019

4190.308: Computer Architecture | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 2

▪ Measure, analyze, report, and summarize

▪ Make intelligent choices

▪ See through the marketing hype

▪ Key to understanding underlying organizational motivation

▪ Questions

• Why is some hardware better than others for different programs?

• What factors of system performance are hardware related?

(e.g., Do we need a new machine or a new operating system?)

• How does the machine’s instruction set affect performance?

4190.308: Computer Architecture | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 3

▪ Define

▪ “X is n times faster than Y”

▪ Example: time taken to run a program

• 10s on machine A, 15s on machine B

• Execution TimeB / Execution TimeA = 15s / 10s = 1.5

• Machine A is 1.5 times faster than machine B

𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 = Τ1 𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒

𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 𝑋

𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 𝑌
=

𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 𝑌

𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 𝑋
= 𝑛

4190.308: Computer Architecture | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 4

▪ “Iron law of CPU performance”

𝐶𝑃𝑈 𝑇𝑖𝑚𝑒 =
𝑆𝑒𝑐𝑜𝑛𝑑𝑠

𝑃𝑟𝑜𝑔𝑟𝑎𝑚
=

𝐶𝑦𝑐𝑙𝑒𝑠

𝑃𝑟𝑜𝑔𝑟𝑎𝑚
×
𝑆𝑒𝑐𝑜𝑛𝑑𝑠

𝐶𝑦𝑐𝑙𝑒

=
𝐼𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠

𝑃𝑟𝑜𝑔𝑟𝑎𝑚
×

𝐶𝑦𝑐𝑙𝑒𝑠

𝐼𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛
×
𝑆𝑒𝑐𝑜𝑛𝑑𝑠

𝐶𝑦𝑐𝑙𝑒

= 𝐼𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 𝐶𝑜𝑢𝑛𝑡 × 𝐶𝑃𝐼 × 𝐶𝑙𝑜𝑐𝑘 𝐶𝑦𝑐𝑙𝑒 𝑇𝑖𝑚𝑒

=
𝐼𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 𝐶𝑜𝑢𝑛𝑡 × 𝐶𝑃𝐼

𝐶𝑙𝑜𝑐𝑘 𝑅𝑎𝑡𝑒

4190.308: Computer Architecture | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 5

▪ (Average) Cycles Per Instruction

▪ Example: CPI = 0.43 x 1 + 0.21 x 2 + 0.12 x 2 + 0.24 x 2 = 1.57

𝐶𝑃𝐼 =
𝐶𝑙𝑜𝑐𝑘 𝐶𝑦𝑐𝑙𝑒𝑠

𝐼𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 𝐶𝑜𝑢𝑛𝑡
= σ𝑖=1

𝑛 (𝐶𝑃𝐼𝑖 ×
𝐼𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 𝐶𝑜𝑢𝑛𝑡𝑖

𝐼𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 𝐶𝑜𝑢𝑛𝑡
)

Instruction Class Frequency CPIi

ALU operations 43% 1

Loads 21% 2

Stores 12% 2

Branches 24% 2

4190.308: Computer Architecture | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 6

𝐶𝑃𝑈 𝑇𝑖𝑚𝑒 = 𝐼𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 𝐶𝑜𝑢𝑛𝑡 × 𝐶𝑃𝐼 × 𝐶𝑙𝑜𝑐𝑘 𝐶𝑦𝑐𝑙𝑒 𝑇𝑖𝑚𝑒

Instruction
Count

CPI Clock Cycle

Algorithm ○ △

Programming language ○ ○

Compiler ○ ○

ISA ○ ○ ○

Microarchitecture ○ ○

Technology ○

4190.308: Computer Architecture | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 7

▪ CPI ≃ 1.0

• Fetch instruction each clock cycle

• Effectively process new instruction almost every cycle

(Although each individual instruction has latency of 5 cycles)

▪ CPI > 1.0

• Sometimes must stall or cancel branches

▪ Computing CPI

• C clock cycles

• I instructions executed to completion

• B bubbles injected (C = I + B)

CPI = C / I = (I + B) / I = 1.0 + B / I

Average penalty due to bubbles

4190.308: Computer Architecture | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 8

▪ Net effect of penalties: 0.05 + 0.16 + 0.06 = 0.27 (CPI = 1.27)

LP: Penalty due to load/use hazard stalling (LP = 0.25*0.20*1 = 0.05) Typical value

Fraction of instructions that are loads 0.25

Fraction of load instructions requiring stall 0.20

Number of bubbles injected each time 1

MP: Penalty due to mispredicted branches (MP = 0.20*0.40*2 = 0.16)

Fraction of instructions that are conditional jumps 0.20

Fraction of conditional jumps mispredicted 0.40

Number of bubbles injected each time 2

RP: Penalty due to ret instructions (RP = 0.02*3 = 0.06)

Fraction of instructions that are returns 0.02

Number of bubbles injected each time 3

4190.308: Computer Architecture | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 9

▪ SPEC (Standard Performance Evaluation Corporation)

• A non-profit organization that aims to “produce, establish, maintain and endorse a

standardized set” of performance benchmarks for computers

• CPU, Power, HPC (High-Performance Computing), Web servers, Java, Storage, …

• http://www.spec.org

▪ SPEC CPU benchmark

• An industry-standardized, CPU-intensive benchmark suite, stressing a system’s

processor, memory subsystem and compiler

– Companies have agreed on a set of real program and inputs

– Valuable indicator of performance (and compiler technology)

• CPU89 → CPU92 → CPU95 → CPU2000 → CPU2006 → CPU2017

http://www.spec.org/

4190.308: Computer Architecture | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 10

An embarrassed Intel Corp. acknowledged Friday that a bug in a software

program known as a compiler had led the company to overstate the speed of its

microprocessor chips on an industry benchmark by 10 percent. However,

industry analysts said the coding error…was a sad commentary on a common

industry practice of “cheating” on standardized performance tests…The error was

pointed out to Intel two days ago by a competitor, Motorola …came in a test

known as SPECint92…Intel acknowledged that it had “optimized” its compiler to

improve its test scores. The company had also said that it did not like the practice

but felt to compelled to make the optimizations because its competitors were

doing the same thing…At the heart of Intel’s problem is the practice of “tuning”

compiler programs to recognize certain computing problems in the test and then

substituting special handwritten pieces of code…

Saturday, January 6, 1996 New York Times

4190.308: Computer Architecture | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 11

▪ SPECspeed suites

• 10 integer benchmarks and 10 floating point benchmarks

• Always run one copy of each benchmark

– Negligible I/O, so focuses on CPU performance

• Normalize relative to reference machine

– Sun Microsystems’ historical server: Sun Fire V490 with 2100MHz UltraSPARC-IV+ chips

• Summarize as geometric mean of performance ratios:

▪ SPECrate suites

• 10 integer benchmarks and 13 floating point benchmarks

• Run multiple concurrent copies of each benchmark (for throughput)

𝑛

ෑ

𝑖=1

𝑛

𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 𝑟𝑎𝑡𝑖𝑜 𝑖

4190.308: Computer Architecture | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 12

Integer Benchmarks (SPECspeed 2017 Integer) Floating Point Benchmarks (SPECspeed 2017 Floating Point)

Name Lang. KLOC Application Area Name Lang. KLOC Application Area

perlbench C 362 Perl interpreter bwaves Fortran 1 Explosion modeling

gcc C 1304 GNU C compiler cactuBSSN
C++, C,
Fortran

257 Physics: relativity

mcf C 3 Route planning lbm C 1 Fluid dynamics

omnetpp C++ 134
Discrete event simulation –
computer network

wrf
Fortran,

C
991 Weather forecasting

xalancbmk C+ 520 XML to HTML conversion via XSLT cam4
Fortran,

C
407 Atmosphere modeling

x264 C 96 Video compression pop2
Fortran,

C
338 Wide-scale ocean modeling

deepsjeng C++ 10 AI: alpha-beta tree search (Chess) Imagick C 259 Image manipulation

leela C++ 21 AI: Monte Carlo tree search (Go) nab C 24 Molecular dynamics

exchange2 Fortran 1
AI: Recursive solution generator
(Sudoku)

fotonik3d Fortran 14 Computational Electromagnetics

xz C 33 General data compression roms Fortran 210 Regional ocean modeling

4190.308: Computer Architecture | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 13

▪ 4 cores @ 2.66GHz

4190.308: Computer Architecture | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 14

Constrained by
power, ILP, and
memory latency

Modern CPU Design

4190.308: Computer Architecture | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 16

ExecutionExecution

Functional

Units

Instruction ControlInstruction Control

Integer/

Branch

FP

Add

FP

Mult/Div
Load Store

Instruction

Cache

Data

Cache

Fetch

Control

Instruction

Decode

Address

Instructions

Operations

Prediction

OK?

DataData

Addr. Addr.

General

Integer

Operation Results

Retirement

Unit

Register

File

Register

Updates

4190.308: Computer Architecture | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 17

4190.308: Computer Architecture | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 18

▪ Grabs instruction bytes from memory

• Based on current PC + Predicted targets for predicted branches

• Hardware dynamically guesses whether branches taken/not taken and (possibly)

branch target

▪ Translates instructions into Operations

• Primitive steps required to perform

instruction

• Typical instruction requires 1-3 operations

▪ Converts register reference into Tags

• Abstract identifier linking destination of

one operation with sources of later operations

Instruction ControlInstruction Control

Instruction

Cache

Fetch

Control

Instruction

Decode

Address

Instructions

Operations

Retirement

Unit

Register

File

Instruction ControlInstruction Control

Instruction

Cache

Fetch

Control

Instruction

Decode

Address

Instructions

Operations

Retirement

Unit

Register

File

4190.308: Computer Architecture | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 19

▪ Multiple functional units

• Each can operate in independently

▪ Operations performed as soon

as operands available

• Not necessarily in program order

• Within limits of functional units

▪ Control logic

• Ensures behavior equivalent to

sequential program execution
ExecutionExecution

Functional

Units

Integer/

Branch

FP

Add

FP

Mult/Div
Load Store

Data

Cache

Prediction

OK?

DataData

Addr. Addr.

General

Integer

Operation Results

Register

Updates
Operations

4190.308: Computer Architecture | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 20

▪ Multiple instructions can execute in parallel

▪ Some instructions take > 1 cycle, but can be pipelined

Instruction Latency Cycles/Issue

Load / Store 4 1

Integer Multiply 3 1

Integer Divide 3 – 30 3 – 30

Double/Single FP Multiply 5 1

Double/Single FP Add 3 1

Double/Single FP Divide 10 – 15 6 – 11

2 load 1 store 4 integer
2 FP

multiply
1 FP

add/divide

4190.308: Computer Architecture | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 21

▪ Translates instructions dynamically into “μops”

• ~ 118 bits wide

• Holds operation, two sources, and destination

▪ Executes μops with “Out of Order” engine

• μops executed when

– Operands available

– Functional unit available

• Execution controlled by “Reservation Stations”
– Keeps track of data dependencies between μops

– Allocates resources

4190.308: Computer Architecture | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 22

▪ Critical to performance

• Typically 11 – 15 cycle penalty for misprediction

▪ Branch Target Buffer (BTB)

• 512 entries

• 4 bits of history

• Adaptive algorithm: Can recognize repeated patterns, e.g., alternating taken – not

taken

▪ Handling BTB misses

• Detect in ~cycle 6

• Predict taken for negative offset, not taken for positive (Loops vs. conditionals)

4190.308: Computer Architecture | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 23

▪ Branch history

• Encode information about prior history of branch instructions

• Predict whether or not branch will be taken

▪ State machine

• Each time branch taken, transition to right

• When not taken, transition to left

• Predict branch taken when in state Yes! or Yes?

T T T

Yes! Yes? No? No!

NT

T

NT NT

NT

4190.308: Computer Architecture | Spring 2019 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 24

▪ Design technique

• Create uniform framework for all instructions

– Want to share hardware among instructions

• Connect standard logic blocks with bits of control logic

▪ Operation

• State held in memories and clocked registers

• Computation done by combinational logic

• Clocking of registers/memories sufficient to control overall behavior

▪ Enhancing performance

• Pipelining increases throughput and improves resource utilization

• Must make sure to maintain ISA behavior

