
  

    

Systems Software & Architecture Laboratory 

Dept. of Computer Science and Engineering 

4190.308: Computer Architecture (Fall 2018) 

Project #5: Optimizing Performance on a Pipelined Y86-64 Processor 

Due: December 16th (Sunday), 11:59PM 

 

1. Introduction 

In this project, you will learn how to optimize the performance of a program on a pipelined Y86-

64 processor. Our target is the pipelined Y86-64 processor implementation called PIPE-Stall which 

does not support data forwarding. You need to optimize the bmp_mosaic() function written in 

Project #3 so that you can get the most out of the PIPE-Stall processor. 

 

2. The PIPE-Stall processor 

2.1 Supported instructions 

In addition to the original Y86-64 instructions, the PIPE-Stall processor supports iaddq, mulq, divq, 

rmmovb, and mrmovb instructions you have implemented in Project #4. 

 

2.2 Characteristics of the PIPE-Stall processor 

The original PIPE processor described in the textbook uses data forwarding whenever there are data 

dependencies among instructions. However, the PIPE-Stall processor stalls if there is a data hazard. 

Some of example cases are shown below. 

 

2.2.1 Normal Data Hazard 

 

 

 

Due to the data dependency on the %rax register, the pipeline is stalled for 3 cycles (gray boxes) 

until the irmovq instruction writes the value to the %rax register in the write-back stage. 

 

2.2.2 Load / Use Data Hazard 
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The load/use data hazard is treated the same way as the data hazard shown in 2.2.1. The addq 

instruction is stalled for 3 cycles (yellow boxes) until the value read from memory is written into 

the %rax register. In the above example, note that the mrmovq instruction is stalled for 3 cycles as 

well (gray boxes), because there is a data dependency on the %rdx register with the previous irmovq 

instruction. 

 

2.2.3 Procedure Call / Return 

The call and ret instructions have a data dependency to each other as both require the access to 

the %rsp register. Also, they have data dependencies to other instructions that manipulate the %rsp 

register. Let us consider the following program. 

 

The above program will be executed in our PIPE-Stall processor as follows: 

 

 

 

First, the call instruction is stalled for 3 cycles (yellow boxes) until the location of the stack is 

written into the %rsp register by the irmovq instruction. The xorq instruction in the procedure 

immediately follows the call instruction because we supply the address of “sub” (valC of the call 

instruction) to the next fetch stage.  

Second, the ret instruction is stalled for 2 cycles (gray boxes) in the decode stage because it has a 

data dependency with the previous call instruction for the %rsp register. It cannot proceed until 

the call instruction writes the modified value to the %rsp register.  

Finally, once the ret instruction resumes its execution, the fetch stage should be stalled until the 

return address is available (red boxes). The return address becomes available at the end of the 

0x000:     irmovq    Stack,%rsp 

0x00a:     call      sub 

0x013:     halt 

0x014: sub: 

0x014:     xorq      %rax,%rax 

0x016:     ret 

 

            .pos 0x100 

0x100: Stack: 
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memory stage of the ret instruction, and this address is fed back to the fetch stage in the write-

back stage of the ret instruction.  

 

2.2.4 Mispredicted branch 

The mispredicted branch is handled in the same way as the original PIPE processor. We also use 

the always-taken prediction, so the next instructions in the branch target are fetched immediately. 

The branch outcome is known at the end of the execute stage in the conditional branch instruction. 

When the branch is mispredicted, the following two instructions are turned into the nop instructions. 

Consider the following example. 

 

The following diagram shows how the above program is executed in our PIPE-Stall processor. 

 

 

 

The iaddq instruction is stalled for 3 cycles (yellow boxes) due to the data dependency on the %rax 

register with the previous irmovq instruction. As soon as the jg instruction is fetched on cycle 5, 

the next iaddq and jg instructions are fetched on cycle 6 and 7, respectively, assuming that the 

conditional branch is taken. However, when the first jg instruction reaches the execute stage on 

cycle 7, it is known that the branch is not taken. Hence, two instructions fetched on cycle 6 and 7 

are turned into the nop instructions on cycle 8. Meanwhile, the original jg instruction supplies the 

address of the next instruction in the memory stage so that the addq instruction is fetched on cycle 

8. 

  

0x000:     irmovq    $3,%rax 

0x00a: miss: 

0x00a:     iaddq     $-4,%rax 

0x014:     jg        miss 

0x01d:     addq      %rcx,%rdx 

0x01f:     halt 
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3. Optimizing the performance of bmp_mosaic() on PIPE-Stall  

3.1 Rewriting bmp_mosaic() for PIPE-Stall 

Your task is to rewrite the bmp_mosaic() function you have written in Project #3 to optimize its 

performance on the PIPE-Stall processor. The prototype of bmp_mosaic() is same as the one in 

Project #3: 

 

As in Project #3, four arguments are passed in %rdi, %rsi, %rdx, and %rcx registers, respectively. 

There is no limitation in the register use. You can freely use all the registers available in the Y86-64 

architecture (e.g., %rax, %rbx, %rcx, %rdx, %rsi, %rdi, %rbp, %rsp, %r8 ~ %r14).  Remember that 

there is no %r15 in Y86-64. 

 

The following figure shows the memory layout when your program is running. When the power is 

turned on, the PIPE-Stall processor begins its execution by fetching an instruction at 0x0000. The 

startup code first sets the stack pointer, initializes registers with arguments for bmp_mosaic(), and 

calls the bmp_mosaic() function which is located at 0x0400. 

The image data is stored in a memory region starting at 

0x1000. Due to this layout, the maximum stack size is limited 

to about 709 bytes (0x300 – startup code size).  

 

The performance of your code will be measured by the total 

number of cycles to complete the given task. Note that our 

PIPE-Stall processor stalls for 3 cycles whenever there is a 

data dependency between instructions. Also, it has 2-cycle 

penalty for mispredicted branch and 3-cycle penalty for ret 

instruction. Considering these characteristics of the PIPE-Stall 

processor, you have to optimize the performance of 

bmp_mosaic(). You may make any semantics preserving 

transformations to the bmp_mosaic() function such as 

reordering instructions. You may also find it useful to read 

about loop unrolling in Section 5.8 of the textbook. Loop 

unrolling is a program transformation that reduces the 

number of iterations for a loop by increasing the number of 

elements computed on each iteration. 

void bmp_mosaic (unsigned char *imgptr, long long width, long long height, 

                    long long size); 
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3.2 Evaluation 

To receive any credit here, your code must be correct first. The half of your credit (50 points) will 

depend on the test cases which check whether your code is correct or not. Once you pass all the 

test cases, you will get different amount of credits depending on the performance of your code. 

We will express the performance of your code in units of cycles per pixels (CPP). That is, if the 

simulated code requires C cycles to change N pixels in a BMP file, then CPP is C/N.  

 

Since some cycles are used to set up the call to bmp_mosaic() and to set up the loops, you will 

get different CPP values for different combinations of image heights, image widths, and square sizes. 

We will therefore evaluate the performance of your function by computing the average of the CPPs 

for different parameters. If your average CPP is c, then your remaining credit S will be determined 

as follows: 

 

c <= 20.0 S = 50 points + 10 points bonus 

20.0 < c <= 25.0 S = 50 points 

25.0 < c <= 30.0 S = 45 points 

30.0 < c <= 35.0 S = 40 points 

35.0 < c <= 40.0 S = 35 points 

40.0 < c <= 50.0  S = 30 points 

50.0 < c <= 60.0 S = 25 points 

60.0 < c <= 70.0 S = 20 points 

70.0 < c <= 80.0 S = 15 points 

80.0 < c <= 100.0 S = 10 points 

100.0 < c <= 150.0 S = 5 points 

c > 150.0 S = 0 points 

 

3.3 Verifying your code 

You can use the sequential Y86-64 simulator (ssim) you have implemented in Project #4 to verify 

the logical correctness of your code. For this purpose, we provide a sample image data along with 

the corresponding simulator output (result.out). The output generated by ssim (with the option 

-s) for the given image data should match the content of the result.out file. (Try “make test” to 

compare the result.) The actual number of cycles taken on the PIPE-Stall processor will be available 

when you run your code on the grading server. (We also encourage you to implement the PIPE-

Stall simulator by modifying the pipe-full.hcl file. It was one of the project assignments last 

semester!) 
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3.4 Restrictions 

• The code size of bmp_mosaic() should be less than or equal to 2048 bytes. The 

bmp_mosaic() function starts at the address 0x400. Therefore, the address of your code 

should be within 0x0C00. 

• There is no restriction in the register usage. You can freely use any of Y86-64 registers. 

Also, you can use stack for temporary storage, but the maximum stack size is limited to 

709 bytes.  

• The total number of cycles in the PIPE-Stall simulator is set to 10,000,000 cycles. If your 

program runs longer than this limit, it will be terminated.  

• Your bmp_mosaic() implementation should work for BMP images of any size.   

• Your bmp_mosaic() implementation should work for any positive value of “size” less than 

image width & height. 

• Your bmp_mosaic() implementation should leave the bytes in the padding area untouched.  

• This time, the total number of submissions is limited to 50 times. 

 

4. Skeleton codes  

The following skeleton codes are provided for this project.  

 

Makefile The main Makefile for this project. You need to set YAS and SSIM to point to 

the locations of yas and ssim, respectively (Use yas and ssim in Project #4). 

bmpmain.ys The Y86-64 assembly file which contains the startup code and the sample image 

data.  

bmpmosaic.ys The Y86-64 assembly file for implementing bmp_mosaic(). You should submit 

this file.  

result.out The sample output. When you give the “-s” option to the simulator, it will 

automatically dump the memory locations whose values are changed into the 

file named memory.out. The contents of memory.out should be identical to this 

file. (cf. run “make test”) 

 

5. Hand in instructions 

 

• You only need to submit the bmpmosaic.ys file to the grading server at http://sys.snu.ac.kr 
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6. Logistics 

 

• You will work on this assignment alone. 

• If you have any questions, please feel free to post them in the QnA board. 

• Only the assignments submitted before the deadline will receive the full credit. 25% of the 

credit will be deducted for every single day delay. 

• You can use up to 5 slip days during this semester. Please let us know the number of slip 

days you want to use in the QnA board in the submission site within 5 days after the 

deadline. 

• Any attempt to copy others’ work will result in heavy penalty (for both the copier and the 

originator). Don’t take a risk. 

 

 

This is your last project. Thanks for all your hard work during this semester.  

 

Jin-Soo Kim 

Systems Software & Architecture Laboratory 

Dept. of Computer Science and Engineering 

Seoul National University 

 

 


