

Systems Software & Architecture Laboratory

Dept. of Computer Science and Engineering

4190.308: Computer Architecture (Fall 2018)

Project #4: Enhancing the Sequential Y86-64 Processor

Due: December 3rd (Monday), 11:59PM

1. Introduction

In this project, you will learn about the design and implementation of a sequential Y86-64 processor

by enhancing its ISA (Instruction Set Architecture).

2. New instructions for Y86-64 processor

Your task is to extend the Y86-64 ISA to support new instructions: iaddq, mulq, divq, rmmovb, and

mrmovb.

2.1 iaddq : rB  rB + V

The iaddq instruction adds the 64-bit constant value V to register rB. The condition codes should

be set accordingly.

2.2 mulq : rB  rB * rA

The mulq instruction multiplies rA and rB and stores the result to register rB. The condition codes

should be set accordingly.

2.3 divq : rB  rB / rA

The divq instruction divides rB by rA and stores the result to register rB. The result should be the

same as that of the integer division in C (i.e., non-integral results are truncated towards 0). When

the divisor (the value of rA) is zero, the result is set to TMin (= 0x8000000000000000) and the OF

flag is set. Other ZF and SF flags are set according to the result (even when the divisor is zero).

Systems Software & Architecture Laboratory

Dept. of Computer Science and Engineering

2.4 rmmovb : M1[rB+D]  LSB(rA)

The rmmovb instruction stores the LSB (Least Significant Byte) of the register rA into the memory

address rB + D, where D is a 64-bit constant. No condition codes are affected.

2.5 mrmovb : rA  Zero_Extend(M1[rB+D])

The mrmovb instruction reads a single byte from the memory address rB + D and stores it into the

LSB (Least Significant Byte) of the register rA. Other remaining bits in register rA are cleared to 0.

No condition codes are affected.

3. Enhancing the Sequential Y86-64 simulator (SEQ)

You will be mainly working in ./misc and ./seq directories for this project. The files in ./misc

directory are used by the Y86-64 assembler (yas) and Y86-64 instruction simulator (yis). We have

already modified some of files to make the Y86-64 assembler (yas) understand the new instructions

when it generates the binary codes (*.yo) from the assembly codes (*.ys).

Your task is to enhance the SEQ simulator so that it simulates the operations of new instructions

correctly. Most of the SEQ simulator codes are stored in ./seq directory, but some of files in ./misc

directory are used as well to build the SEQ simulator (e.g., ./misc/isa.c, ./misc/isacore.c,

and ./misc/isa.h). Among others, you need to pay attention to the following files:

./seq/ssimcore.c This file implements the core logic of the SEQ simulator.

./seq/seq-full.hcl This file describes the control logic of the SEQ simulator in HCL

(Hardware Control Language).

./misc/isacore.c This file contains the codes that simulate the operation of each

instruction.

Systems Software & Architecture Laboratory

Dept. of Computer Science and Engineering

Note that, in order to support rmmovb and mrmovb instructions, we have slightly enhanced the

memory model in the SEQ simulator by adding a control signal called “mem_byte”. When the

mem_byte signal is set to 1, only a single byte is read from or written to the given memory address.

If the mem_byte signal is 0, the whole 64-bit data is accessed. Therefore, you have to generate the

mem_byte control signal properly according to the current instruction executed.

4. Skeleton codes

The following skeleton codes are provided for this project. These skeleton codes are based on the

Y86-64 toolset developed by textbook authors available at http://csapp.cs.cmu.edu/3e/sim.tar

README The original README file in the Y86-64 toolset.

README.SNU This file summarizes some of changes made for this project.

Makefile This is a top-level Makefile used by the GNU make utility.

simguide.pdf An official guide to the Y86-64 simulators. You must read this file first.

misc/ This directory contains the files for Y86-64 assembler (yas) and instruction

simulator (yis).

seq/ This directory contains the files for implementing the SEQ Y86-64 simulator.

y86-code/ This directory has the sample codes written in Y86-64. We have added several

test programs for new instructions such as iaddq1.ys, iaddq2.ys, mulq1.ys,

mulq2.ys, divq1.ys, divq2.ys, mrmovb.ys, and mrmovb.ys.

5. Hand in instructions

• You need to submit ./misc/isacore.c, ./seq/seq-full.hcl, and ./seq/ssimcore.c

files only. You can do this by performing “make handin” in the top directory. It will generate

the pa4.tar.gz file in the ./handin directory. Upload this file to the submission site

(http://sys.snu.ac.kr).

http://csapp.cs.cmu.edu/3e/sim.tar

Systems Software & Architecture Laboratory

Dept. of Computer Science and Engineering

6. Logistics

• You will work on this assignment alone.

• If you have any questions, please feel free to post them in the QnA board.

• Only the assignments submitted before the deadline will receive the full credit. 25% of the

credit will be deducted for every single day delay.

• You can use up to 5 slip days during this semester. Please let us know the number of slip

days you want to use in the QnA board in the submission site within 1 week after the

deadline.

• Any attempt to copy others’ work will result in heavy penalty (for both the copier and the

originator). Don’t take a risk.

Have fun!

Jin-Soo Kim

Systems Software & Architecture Laboratory

Dept. of Computer Science and Engineering

Seoul National University

Systems Software & Architecture Laboratory

Dept. of Computer Science and Engineering

Appendix: Step-by-step examples

Assume that the skeleton code is extracted in the /pa4 directory.

$ cd /pa4

$ ls

Makefile misc README README.SNU seq simguide.pdf y86-code

$ make // make everything

(cd misc; make all)

make[1]: Entering directory '/pa4/misc'

make[1]: Nothing to be done for 'all'.

make[1]: Leaving directory '/pa4/misc'

(cd seq; make all GUIMODE= TKLIBS="" TKINC="")

make[1]: Entering directory '/pa4/seq'

make[1]: Nothing to be done for 'all'.

make[1]: Leaving directory '/pa4/seq'

(cd y86-code; make all)

make[1]: Entering directory '/pa4/y86-code'

make[1]: Nothing to be done for 'all'.

make[1]: Leaving directory '/pa4/y86-code'

$./seq/ssim y86-code/iaddq1.yo // run iaddq1.yo on SEQ simulator

21 bytes of code read

IF: Fetched irmovq at 0x0. ra=----, rb=%rax, valC = 0x105e

IF: Fetched iaddq at 0xa. ra=----, rb=----, valC = 0x0

2 instructions executed

Status = INS // Initially, you get invalid instr. error. Fix it.

Condition Codes: Z=1 S=0 O=0

Changed Register State:

%rax: 0x0000000000000000 0x000000000000105e

Changed Memory State:

$./seq/ssim y86-code/rmmovb.yo // run rmmovb.yo on SEQ simulator

31 bytes of code read

IF: Fetched irmovq at 0x0. ra=----, rb=%rdx, valC = 0x100

IF: Fetched irmovq at 0xa. ra=----, rb=%rax, valC = 0xcafebabe12345678

IF: Fetched rmmovb at 0x14. ra=%rax, rb=%rdx, valC = 0x0

Wrote 0xcafebabe12345678 to address 0x100

IF: Fetched halt at 0x1e. ra=----, rb=----, valC = 0x0

4 instructions executed

Status = HLT

Condition Codes: Z=1 S=0 O=0

Changed Register State:

%rax: 0x0000000000000000 0xcafebabe12345678 // Currently, you have wrong result. Fix it.

%rdx: 0x0000000000000000 0x0000000000000100

Changed Memory State:

0x0100: 0x0000000000000000 0xcafebabe12345678

$ make handin // Make a tar file for submission

Submit handin/pa4.tar.gz file to the sys.snu.ac.kr server

$ ls -l handin
total 56
-rw-r--r-- 1 jinsoo jinsoo 9736 11월 26 18:04 isacore.c

-rw-rw-r-- 1 jinsoo jinsoo 6271 11월 26 18:04 pa4.tar.gz // Submit this file

-rw-r--r-- 1 jinsoo jinsoo 7123 11월 26 18:04 seq-full.hcl

-rw-r--r-- 1 jinsoo jinsoo 8755 11월 26 18:04 ssimcore.c

