

Systems Software & Architecture Laboratory

Dept. of Computer Science and Engineering

4190.308: Computer Architecture (Fall 2018)

Project #3: Image Pixelization

Due: November 18th (Sunday), 11:59PM

1. Introduction

In this project, you will implement a basic image processing program using the x86-64 assembly

language. An image file in the BMP format will be given as an input to your program. This

assignment aims at introducing various primitive instructions provided by the x86-64 assembly

language. In addition, you will learn the basic structure of the BMP image file.

2. Problem specification

Complete the file bmpmosaic.s which implements the function bmp_mosaic() in the x86-64

assembly language. The prototype of bmp_mosaic() is as follows:

The first argument, imgptr, points to the bitmap data which stores the actual image, pixel by pixel.

The next two arguments, width and height, represent the width and the height of the given image

(in pixels), respectively. The last argument, size, indicates the size of square for pixelization. Your

task is to perform pixelization on the given image by manipulating the bitmap data in bmp_mosaic().

3. Backgrounds

3.1 Pixelization

Pixelization (or mosaic) is a technique used in editing images or video, whereby an image is blurred

by displaying part or all of it at a markedly lower resolution. It is primarily used for censorship or

hiding sensitive data. The effect is a standard graphics filter, available in all but the most basic

bitmap graphics editors (cf. https://en.wikipedia.org/wiki/Pixelization). In this project, we will

implement pixelization using mean filter.

3.2 Mean filter

Mean filter is also known as box filter and average filter. Mean filter just set the color values to the

average of those values in the given size of pixels. The example of mean filtering is shown below.

void bmp_mosaic (unsigned char *imgptr, long long width, long long height,

 long long size);

https://en.wikipedia.org/wiki/Pixelization

Systems Software & Architecture Laboratory

Dept. of Computer Science and Engineering

In case the image width or height is not a multiple of the given square size, we just calculate

average on remaining pixels as follows.

– Size of square: 2

– Size of square: 4

Here are examples of pixelization using mean filter.

Original image Size of square: 2 Size of square: 4 Size of square: 8

3.2 RGB color model

The RGB color model is one of the most common ways to encode color

images in the digital world. The RGB color model is based on the theory

that all visible colors can be created using the primary additive colors, red,

green, and blue. When two or three of them are combined in different

amounts, other colors are produced. The RGB model is important to

graphic design as it is used in computer monitors.

Systems Software & Architecture Laboratory

Dept. of Computer Science and Engineering

3.2 BMP file format

The BMP file format is an image file format used to store digital images, especially on Microsoft

Windows operating systems. A BMP file contains a BMP file header, a Bitmap information header,

an optional color palette, and an array of bytes that defines the bitmap data. Since the BMP file

format has been extended several times, it supports several different types of encoding modes. For

example, image pixels can be stored with a color depth of 1 (black and white), 4, 8, 16, 24 (true

color, 16.7 million colors) or 32 bits per pixel. Images of 8 bits and fewer can be either grayscale or

indexed color mode. More details on the BMP file format can be found at

http://en.wikipedia.org/wiki/BMP_file_format.

In this project, we will focus only on the 24-bit uncompressed RGB color mode with the “Windows

V3” bitmap information header. Under this mode, our target image file has the following structure.

BMP file header (14 bytes)

Bitmap information header (40 bytes)

Bitmap data

We will provide you with the skeleton codes, in which all the BMP file header and the Bitmap

information header are parsed. So you don’t have to worry about these headers. Before

manipulating the bitmap data, we check for these headers to make sure the target image file is in

the right mode, and then extract the width and the height of the image. The first argument of

bmp_mosasic(), imgptr, will point to the memory address that contains the actual bitmap data.

3.3 Bitmap data format

The bitmap data describes the image, pixel by pixel. Each pixel consists of an 8-bit blue (B) byte, a

green (G) byte, and a red (R) byte in that order. Pixels are stored “upside-down” with respect to

normal image raster scan order, starting in the lower left corner, going from left to right, and then

row by row from the bottom to the top of the image. Note that the number of bytes occupied by

each row should be a multiple of 4. If that’s not the case, the remaining bytes are padded with

zeroes. The following figure summarizes the structure of the bitmap data. For pixelization, you

should take the average for each color value separately.

imgptr

http://en.wikipedia.org/wiki/BMP_file_format

Systems Software & Architecture Laboratory

Dept. of Computer Science and Engineering

4. Skeleton codes and sample data

The following skeleton codes and sample data are provided for this project.

Makefile This is a file used by the GNU make utility.

bmp.c This is a C program which contains main(), bmp_in(), and bmp_out() functions.

The bmp_in() function reads the content of the BMP file into the memory and

parses its header. The bmp_out() function creates a new image file which is

modified by bmp_mosaic().

bmpmosaic.s This is a skeleton assembly code for bmp_mosaic(). You are supposed to fill the

main body of this file.

*.bmp These are sample and reference BMP files.

You can build the executable file using the “make” command. The name of the final executable file

is bmpmosaic. The skeleton codes and sample data can be downloaded from the course homepage

at http://csl.snu.ac.kr/courses/4190.308/2018-2/

http://csl.snu.ac.kr/courses/4190.308/2018-2

Systems Software & Architecture Laboratory

Dept. of Computer Science and Engineering

5. Requirements

• In the main body of bmp_mosaic(), you should use %rax, %rbx, %rcx, %rdx, %rsi, and %rdi

registers only. If you are running out of registers, use stack as temporary storage.

• Among the registers you can use, %rbx is one of callee-saved registers. Therefore, you have

to save and restore the original value of the %rbx register in bmp_mosaic().

• Your program should work for BMP images of any size.

• Your program should work for any positive value of “size” less than image width & height.

• You should leave the bytes in the padding area untouched.

6. Sample output

This is a sample BMP file with 1279 x 861 pixels (twice.bmp).

If you run your program as follows, it will create a new file named “result.bmp”.

The result.bmp file should look like this. In this example, the size of square is 4 pixels. Your output

file result.bmp should be identical to the twice_4.bmp file.

$./bmpmosaic twice.bmp result.bmp 4

Systems Software & Architecture Laboratory

Dept. of Computer Science and Engineering

The following is the output when the size of square is set to 100 pixels (twice_100.bmp).

Systems Software & Architecture Laboratory

Dept. of Computer Science and Engineering

7. Verifying your code

To verify whether your output is correct or not, we provide two sample input BMP files

(einstein.bmp and twice.bmp) and the corresponding reference output BMP files

(einstein_2.bmp, einstein_4.bmp, einstein_8.bmp, twice_4.bmp, and twice_100.bmp). The

suffix number _n in the reference BMP files indicates the square size. BMP files generated by your

program should be identical to the reference BMP files. To check whether the contents of two BMP

files are the same or now, use the “cmp” command as shown below.

8. Hand in instructions

• Submit only the bmpmosaic.s file to the submission site (http://sys.snu.ac.kr).

• If your file contains any register names other than the allowed ones (even in comments),

your file will be rejected by the server.

• Top 5 solutions with smallest code size will have a 10% extra bonus. The code size is

measured by the total number of bytes for the object code of bmp_mosaic().

http://sys.skku.edu/

Systems Software & Architecture Laboratory

Dept. of Computer Science and Engineering

9. Logistics

• You will work on this assignment alone.

• Only the assignments submitted before the deadline will receive the full credit. 25% of the

credit will be deducted for every single day delay.

• You can use up to 5 slip days during this semester. Please let us know the number of slip

days you want to use in the QnA board in the submission site within 1 week after the

deadline.

• Any attempt to copy others’ work will result in heavy penalty (for both the copier and the

originator). Don’t take a risk.

Have fun!

Jin-Soo Kim

Systems Software & Architecture Laboratory

Dept. of Computer Science and Engineering

Seoul National University

Systems Software & Architecture Laboratory

Dept. of Computer Science and Engineering

Appendix. GDB cheat sheet (More info at https://darkdust.net/files/GDB%20Cheat%20Sheet.pdf)

 $ gdb ./bmpmosaic
GNU gdb (Ubuntu 7.11.1-0ubuntu1~16.5) 7.11.1
Copyright (C) 2016 Free Software Foundation, Inc.
...
Reading symbols from ./bmpmosaic...done.
(gdb) break bmp_mosaic
Breakpoint 1 at 0x400b58: file bmpmosaic.s, line 37.
(gdb) run twice.bmp output.bmp 4
Starting program: /home/jinsoo/pa3/bmpmosaic twice.bmp output.bmp 4
BMP file: twice.bmp (1279 x 861 pixels, 24 bits/pixel)

Breakpoint 1, bmp_mosaic () at bmpmosaic.s:37
37 movb $0x55, (%rdi)
(gdb) list
32
33
34
35 # --> FILL HERE <--
36
37 movb $0x55, (%rdi)
38 movb $0x88, 1(%rdi)
39 movb $0xff, 2(%rdi)
40
41
(gdb) print $rdi
$1 = 140737344589894
(gdb) print/x $rdi
$2 = 0x7ffff76e5046
(gdb) print $rsi
$3 = 1279
(gdb) print $rdx
$4 = 861
(gdb) print $rcx
$5 = 4
(gdb) x/8b $rdi
0x7ffff76e5046: 0xd7 0xd7 0xdd 0xd7 0xd7 0xdd 0xd7 0xd7
(gdb) step
38 movb $0x88, 1(%rdi)
(gdb) x/8b $rdi
0x7ffff76e5046: 0x55 0xd7 0xdd 0xd7 0xd7 0xdd 0xd7 0xd7
(gdb) step
39 movb $0xff, 2(%rdi)
(gdb) x/8b $rdi
0x7ffff76e5046: 0x55 0x88 0xdd 0xd7 0xd7 0xdd 0xd7 0xd7
(gdb) s
bmp_mosaic () at bmpmosaic.s:46
46 ret
(gdb) x/8b $rdi
0x7ffff76e5046: 0x55 0x88 0xff 0xd7 0xd7 0xdd 0xd7 0xd7
(gdb) x/8b $rdi+600
0x7ffff76e529e: 0xde 0xde 0xe4 0xdf 0xdf 0xe5 0xdf 0xdf
(gdb) cont

https://darkdust.net/files/GDB%20Cheat%20Sheet.pdf

